CAMBRIDGE SYSTEMATICS

Hands-On TransCAD Training

Performance Measure Calculation

presented to Caltrans District 12 presented by Cambridge Systematics, Inc. Sean McAtee

12/21/2016

Performance Measures

- Jobs / Population within X minutes via auto (or via transit)
- Person Throughput, etc. Network
- Mode Share Matrix
 Toll Trips Matrix Network

CAMBRIDGE SYSTEMATICS

Matrix

Matrix Fundementals

Matrix Files

Contain zone to zone data

- » Trip tables
- » Shortest Paths ("Skims")
- » Mode shares, logsums, etc
- Tend to be very large files
 - » Real numbers = Big files
 - » Compression reduces file size and increases access speed
 - CPU Speed > Disk Speed

Matrix Files

One File, multiple tables

Add/Delete/ Rename

Description	Close
Matrix Name(s)	File Info.
DA SR2 HOV SR3 HOV LHDT	Add Matr Drop Mat
HHDT SR2 NONHOV SR3 NONHOV	Rename

Select a "Core"

ix	Tools Procedures	Networ	rks/Pat
9	DA	-	No m
CA	G_SR2 HOV SR3 HOV LHDT MHDT HHDT SR2 NONHOV SR3 NONHOV		

5

Matrix Files

Show row/column statistic

- » Sum, min, max, etc.
- » TransCAD 5.⁴⁴
- » Sort by matrix marginals
- → Get overall matrix statistics with Matrix → Statistics (□)
- ➤ Compare all core values in a single cell
 > Right-click → Info
- QuickSum (x) Adds a new core with the sum of all existing cores in the file

Matrices in TransCAD (Tier 1)

TAZ Layer		Centroid Layer		Matri	x Fi	le				
ID	SEQ	Tier1TAZ	Internal_sequence_id_T1		-	2	:	4109	:	4192
60001000	1	60001000	1	1						
60002000	2	60002000	2	2						
14109000	4109	14109000	4109	4109						
		28091000	4192	4192						

- Internal zones only
- All 4192 zones
- Also contains transit pseudo zones (not discussed today)
- Index by Seq or TAZ ID
- Contains all 4192 zones
- Matched to TAZ and centroid layers

Matrix Indexing

Filter Matrices

- Internal Only
- Selected subarea only

ID Correspondence

- Switch between TAZ and Sequential IDs
- Explode matrix to more zones

Matrix Indexing

Switch Between Existing Indices

- Matrix → Indices... (
- Pick from indices defined in the file
- Set Rows and columns independently

Defaults in vehicle OD tables

- Rows & Columns: TAZ ID
- All Others: SEQ (1 through 4192)

Matrix Ind	ices			x
Current li Rows	ndices Rows		•	Close
Columns	Columns		•	
Index Na	me	Туре	# Records	Add Index
Rows		Rows	4192	
NodelDs		Rows & Columns	4192	Drop Index
Ids_truck		Rows & Columns	4192	
idinternal		Rows & Columns	4192	
Columns		Columns	4192	

Matrix Indexing

Create a New Index

- Matrix and View must be open
- Matrix → Indices... or 📲
- Click Add
- Matching dataview and Existing base ID
- Allows expanding with new "null" values
- Use a new ID or a new set of records

idinternal	Rows & Columns	4192	
InternalTAZ	Rows & Columns	4109	
Columns	Columns	4192	

TAZ layer only has internal 4109 zones

Work with matrix indices

- » Add a matrix index for internal zones only
- » Try different ways to index OD trip tables

Look at totals from different cores and indices

- » Using marginals
- » Using Matrix → Statistics
- » Using info for a single cell

Matrix Calculations

- > Matrix → Fill (
- Single Value
 - » Simple add/subtract/clear/replace
- Cell by Cell
 - » Compute values from two or more matrix cores
- Formula
 - » Mix operators and use functions
- Vector Multiply
 - » Multiply by a row or column from a dataview

You can work across <u>compatible</u> matrix files!

12

Matrix → Dataview

- Put matrix data into a compatible dataview
 - » Compatible = exact same row/column IDs
 - » Uses active matrix index
 - » Must have a column to receive data
- > Matrix → Fill Dataview ()
 - » Identify matching ID
 - » Select data to use
 - » Choose target column
 - » Can do multiple at once

Dataview S	ettings		~ -				
Fill Method	Fill	existing table	Crea	ate new table	9		
Dataview	TAZ_t	1				-	
ID Field	ID					-	
Using	All Fea	tures				•	
Fill Settings							
Matrix		Dimension	Method	ID	Field		
DA		Row	Sum	n/a	MatDat 👻		4
							×
							••
1							
					ОК	Can	al

CAMBRIDGE SYSTEMATI

Practice

Use the AM OD Matrix

- Compute total passenger vehicles
 - » Create a new matrix core
 - » Fill, but exclude the truck trips
- Fill a dataview
 - » Total AM trip origins
 - » AM Trip destinations from a selected zone
- Create heat maps of each

Performance Measures

VMT Per Capita Matrix

Select zones to consider

- Calculate total population in these zones
 - » Use a selection set and SED join
 - » Consider Pop + Employment or Pop+ [weighted employment]
- Calculate total Passenger Vehicle VMT with <u>at least one end</u> in these zones
 - Compute Trips x Length using matrix fill
 - » Sum for all time periods
 - » Add a matrix index for selected zones
 - » Get sum for trips **to** selected zones
 - » Get sum for trips **from** selected zones
 - » Add together
 - » Important: Trips within the district are counted twice!
- Divide VMT by population (or pop + employment)

VMT, VHT, Delay Network

- Join the All Day Flow file to the network
 - » Use Formula Fields or Formula Fill
- Select links and summarize totals
- Alternate:
 - » Create a distinct boundary in a polygon layer
 - » Use Fill → Aggregate
 - » This will split links that are only partially inside the boundary

VMT

» Length * TOT_Flow

VHT

» (nz(AB_Time * AB_Flow) + nz(BA_Time * BA_Flow))/ 60

VHD or Delay

>> (nz(AB_Flow * (AB_Time - AB_FreeTime)) + nz(BA_Flow * (BA_Time - BA_FreeTime))) / 60

Congested VMT

Network

- Compute VMT for each link
- Select links that meet a congestion threshold
 » E.g., MAX_VOC > 0.90
- Summarize Total VMT separately from VMT on congested Links
 - » % of Links congested

Jobs/Pop w/in specified travel time

Identify zone to analyze

- Fill a new TAZ PK_TIME field with Highway Skim row or column
 - » File for peak Drive Alone skim is skims\outputs\SPMATPK_DA_Tier1.mtx
- Select zones with PK_TIME < X</p>
- Summation of SED in selected zones
- Option: Heat map showing travel time from zone

Jobs/Pop w/in specified travel time Transit Edition Matrix

Transit skims are generated for Tier 2 zones!

- » 12,000 x 12,000 zone matrix
- Transit skims are created for different modes
 » Bus, BRT, LRT, CRT, etc.
- Transit skims have multiple pieces
 - » Wait time (1/2 headway)
 - » Walk/transfer time
 - » In-vehicle time
 - » Cost

We can re-visit this in another session if desired

Person Throughput

Use a formula field to sum and multiply

Occupancy	Vehicle Classes
1	DA
2	SR2 HOV SR2 NONHOV
3+ (3.5)	SR3 HOV SR3 NONHOV

- HOV 3+ Average Occupancy
 - » By purpose in Model Table
 - » Approximate to 3.5 (simple avg is 3.466)

44 H0V3 Occupancy H0V3 Car Occupancies for the 12 trip purposes 3.572,3.572,3.572,3.572,3.314,3.314,3.314,3.094,3.543,3.443,3.595,3.602,3.654

