
Trip Distribution

Trip Distribution: Where will they go?

- Match
 - » Productions & attractions
- Survey Data
 - » Trip length distributions
 - Subregion to subregion patterns

The *Gravity* concept can be used to model travel!

Trip Distribution

- Trips production and attractions are matched by trip purpose
- The distance between the production and attraction zones affects how many trips are made
 - » Zones closer together will have more trips between them
- Distance is accounted for by friction factors
 - » As the zones get further away from each other the friction factors decrease
- Friction factors are typically estimated based on household travel surveys or using Big Data (observed OD trip patterns)

Trip Distribution

Trips between zones i and j are

$$T_{ij} = P_i \cdot \frac{A_j \cdot F_{ij} \cdot K_{ij}}{\sum_{i=1}^{n} (A_j \cdot F_{ij} \cdot K_{ij})}$$

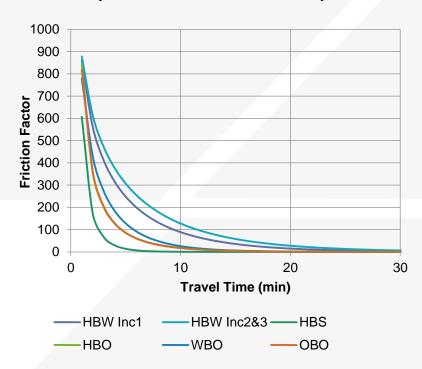
Where:

 T_{ij} = trips from zone j to zone j

 P_i = productions in zone j

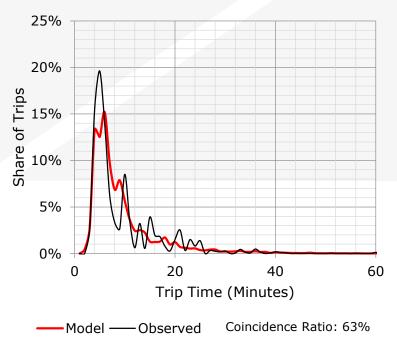
 A_i = attractions in zone j

 $K_{ij} = K$ -factor adjustment from i to zone j


i = production zone

j = attraction zone

n = total number of zones


 F_{ij} = friction factor

Example of friction factors plot

Trip Length Distributions

City of San Luis Obispo Home-Based Work Trip Length Distribution

- Friction factors are adjusted until the modeled trip length distribution looks similar to the observed trip length distribution
- Different friction factors are estimated by trip purpose
- Friction factor distribution is a Gamma function with 3 parameters that can be adjusted

Intrazonal Trips

Interzonal trip

- » Considered in mode choice and assignment
- » Trips travel zone to zone

Intrazonal trip

- » Trips stays in zone
- » Trips never appears on network links

