Mode Choice

Mode Choice: What Mode?

\rightarrow Nested Logit Model
Can I get a ride?

Mode Choice

P Probability of selection any mode depends on all the available modes and relative travel times, costs, other factors

$$
\begin{equation*}
P_{i}=\frac{e^{u_{i}}}{\sum_{j} e^{u_{j}}} \tag{1}
\end{equation*}
$$

Where:
$\mathrm{Pi} \quad=\quad$ probability of selecting mode i
ui $=$ a linear function describing the utility of mode i
e $\quad=\quad$ base of the natural logarithms
> Mode choice models use either logit models or nested logit models
" Nested logit models just group similar alternatives into a nest

Mode Choice Coefficients

	Federal Transit Authority Guidelines	
	Low Value	High Value
Coefficient		
In-vehicle travel time (IVTT)	-0.03	-0.02
Initial wait	-0.09	-0.04
Second wait	-0.09	-0.04
Walk time	-0.09	-0.04
Cost ${ }^{2}$	-	-
Equivalent Minutes of IVTT		
Initial wait	3.00	2.00
Second wait	3.00	2.00
Walk time	3.00	2.00
Home-Based Work Value of Time (Estimated Median Household Income)		
Low Income (\$20,000)	\$2.30	\$3.10
Middle Income ($\$ 55,000$)	\$6.60	\$8.70
High Income (\$140,000)	\$16.80	\$22.40

Mode Choice Constants

- Every alternative in the mode choice except one has a mode choice constant
> Mode choice constant reflects the travelers' perception of the mode
" Transit usually has a lower constant than auto
Constants are estimated by trip purpose
" Home-based school trips may have a higher bike constant than the auto constant because children are more likely to bike to school

Mode Choice Modeling

* Mode choice models can be estimated or calibrated
> Estimation refers to statistical estimations of all coefficients and constants based on observed data
" Requires a lot of data... and patience
(Most of the models assume coefficients within the FTA range or borrow other models' coefficients
" Only constants are then calibrated to correctly predict the number of trips by mode

PA to OD Conversion

\rightarrow Traffic assignment is done on the origin-destination trip table but all the work up to this point has been completed in production-attraction format
" Take PA matrix, add the inverse of the PA matrix and divide by 2 to get OD matrix

Prod	Attr					
TAZ	1	2				
1	100	200				
2	400	100	$\quad \boldsymbol{\square} \quad$	Attr	Prod	
:---:	:---:	:---:				
TAZ	1	2				
1	100	400				
2	200	100				

Divided by 2

Origin	Destination	
TAZ	1	2
1	100	300
2	300	100

