
presented to

presented by

GISDK Basics
Caltrans

May 9, 2016

Sean McAtee,
Paul Ricotta

1

GISDK Programming
Scripting Language

C-like?
» Do … end instead of { … }

– Macro … EndMacro
– Dbox … EndDbox
– Etc…

» Variable type is handled automatically
– Single-element variables do not need to be declared

» Code can must be contained in
– Macros (similar to functions)
– Dialog Boxes
– Objects

• Can have methods and properties
» Must be complied prior to running

2

Editing Resource code

Syntax Highlighting
» Function Names
» Item Start/End
» Strings
» Numbers
» Comments

Various programs available
» Notepad++ (Free, open source)
» Ultra Edit (not free)
» Various others…

Basic, no highlighting: notepad.exe

3

Language Elements

Variables
» Very flexible (dynamic typing)
» Integer, string, real
» Many more…

Arrays

» Each element can have a different type

» Arrays can be nested

// indicates end of line comments

4

Language Elements

Arrays
» Arrays may need to be defined:

» Array Length

» Arrays are pointers!
This can get you in

trouble!

5

Language Elements

Vectors
» Contain a row or column of data (1 dimension only)
» All elements are the same type
» Allow for efficient storage and fast operations

» Read and set vectors from matrices and data tables

6

Language Elements

Matrices
» Referenced with “Matrix Currencies”
» Point to a matrix file and core
» efficient Two dimensional data storage

» New in TransCAD 6: Memory Only matrices can be used
for scratch data

– Can be much faster
– Can run out of memory with large matrices

7

Language Elements

Functions
» Built-in functions

» Functions may return values

Operators
» Most standard math operators apply:

8

Language elements

Loops
» For Loops:

» While Loops:

Avoid looping over long arrays or
vectors to perform simple operations.

Vector math is much quicker

9

Language Elements
If Statements
» Evaluate a True/False condition
» Uses = in a different context

– There is not a separate assignment operator (except
for matrices)

– Relational Operators

– and, or, & not (Lazy evaluation or call by need)

10

Macros
Macros contain code
» Operations are performed in sequence as called
» Macros end when a value is returned
» Arguments can be passed to macros

11

Dialog Boxes
Dialog boxes interact with the user
» Dialog box items contain code

12

Objects
GISDK is allows creation and use of Objects
» Objects behave like physical objects

– Each object is of a certain type: classes of objects
– They have attributes or characteristics: properties
– They have things they can do: methods

13

Objects – Example: A car as an object

Class “Car”
» I can create a new object of type or class “Car”
» In GISDK: MyCar = CreateObject(“Car”)

A car can have properties
» Each car can have different attributes

– Color (Red, Blue, Green, etc)
– Make, Model, etc.

» In GISDK:
– MyCar.Color = “Green”
– MyCar.Make = “Volkswagen”
– MyCar.Model = “New Beetle”

14

Objects – Example: A car as an object

A car can have Methods
» Methods let the car actually do something

– Accelerate, decelerate, lock, unlock, “Roll down the
windows”

» In GISDK:
– MyCar.Accelerate(15) //Speed up by 15 mph
– MyCar.Decelerate(5) //Slow down by 5 mph

Check the property “Speed”
» ShowMessage(“Speed is: “ + String(MyCar.Speed))

– If the car started at 0 mph, what is the speed?

15

Objects – Example: A car as an object

16

Objects – Example: A car as an object

Create a new car object and adjust the speed
» See what happens if we try to access an undefined

property

17

Objects – Example: A car as an object

New properties can be defined from within the object, but
not externally

All variables in class macros and the “init” constructor
are local and cannot be accessed from another method

The self variable in a class macro provides access to
object properties and methods

18

Objects in the HCAOG Model

Convenience:
» The Utilities class  UT object in HCAOG

– Easily accessed UT.MyFunction(Arg1, Arg2)
Functionality

» The Mapper class  MP object in the Dashboard
– Set up properties for a desired map
– Wrap up most of the functionality within the class,

making map coding updates easier

19

Try It!
Write a Hello Word line
» Tools  GIS Developer’s Kit
» Immediate Execution

Write a Hello World macro
» Create a new text file, rename to .rsc
» Write a macro

– Use the example above
– Compile the macro
– Run the macro

Compile

Run
(Test)

20

Options Arrays

Organized function input

21

Options Arrays
Simply a set of {name, value} pairs

» Options are often optional
– The whole array can be null
– Certain options can be missing (will revert to default)

» Option names with spaces are allowed:
– Opts.[Two Words]

22

Batch Mode

Planning functions are run in Batch Mode:
» Record GUI input using the batch recorder

– Planning  Batch Editing
» This will create a rsc file

– Adjust option values as desired
– Replace option values with variables

» Compile and run a new rsc file

23

Batch Mode: Example

24

Practice: Batch Recorder

Make a simple model dialog box
» Run the gravity model interactively

– Turn on the batch recorder
– Note the Full run/dry run/no run option
– Use a gamma function

» Save the recorded results
» Create a dialog box

– Add gamma parameter text boxes
 Consider including default values

– Add an OK and Cancel button
» Run the gravity model on OK
» Compile and run

25

HCAOG Structure

Resource Code

26

HCAOG Resource Code Files
Humboldt.rsc
» Primary resource code
» Contains dbox “HCAOG Mode”

Humboldt_Dashboard.rsc
» Mapping functions

Humboldt_Summary.rsc
» Summary Report code

Humboldt_Utilities.rsc
» Technical Code (i.e., subroutines)
» Commonly used functions (e.g., table modification, file access)

Humboldt_scen9.rsc
» Scenario management
» Please limit distribution

27

The Default Scenario File
DefaultScenario.ini
» Default scenario settings
» Place to change default filenames, parameters

28

The Default Scenario File

Contains all of the default scenario information
» Filenames (input/output)
» Parameters
» Tables (parameter arrays)
» Access Database Table Names

Each item has a description
» This is shown in the scenario editor description

New scenarios are created based on this file

Old scenarios are (partially) updated when the file changes
» Items can be added/removed
» Changed values are not reflected in old scenarios

29

Humboldt.rsc
1. HCAOG Model Defaults

» Sets program environment (program directory, settings directory,
filenames)

» Creates utility objects
» Defines model steps,
» Loads default scenario information

2. HCAOG Model Step Info
» Dialog button names
» Model step names / macro names
» Disable sub-steps
» Enable/disable sub-steps by default
» Progress bar settings

30

Humboldt.rsc
3. HCAOG Model Dialog Box

» Call this to start the model (The defaults and step info are called
from this dialog box)

» Contains dialog box setup (init)
» Contains dialog box items (dialog box layout)
» Contains dialog box macros (controls model runs)

4. Model Macros

» Consistent with model step info
» Contain the basic model code

– Some Detailed technical code is contained in the utilities file

31

Start Here
(The earlier stuff doesn’t usually change)

Walkthrough – Step 1.1

In-Editor Walkthrough

32

Debugging the Code
TransCAD has an interactive debugger

Two ways to use:
» Set a break in the code
» Turn on “debug mode” when the model is crashing

Try It: Set a break on the line shown below
» Identify the line number in your editor
» Ctrl-F, then find the line shown below

» Leave the debugger open so the model will pause

33

Debugging the Code

In the stopped code, step through each line
» Check the variable window, the watch window

View a scenario array
» Save a scenario file
» Write a small macro

– Use LoadArray
» Debug the macro and view the contents

34

	GISDK Basics
	GISDK Programming �Scripting Language
	Editing Resource code
	Language Elements
	Language Elements
	Language Elements
	Language Elements
	Language Elements
	Language elements
	Language Elements
	Macros
	Dialog Boxes
	Objects
	Objects – Example: A car as an object
	Objects – Example: A car as an object
	Objects – Example: A car as an object
	Objects – Example: A car as an object
	Objects – Example: A car as an object
	Objects in the HCAOG Model
	Try It!
	Options Arrays
	Options Arrays
	Batch Mode
	Batch Mode: Example
	Practice: Batch Recorder
	HCAOG Structure
	HCAOG Resource Code Files
	The Default Scenario File
	The Default Scenario File
	Humboldt.rsc
	Humboldt.rsc
	Walkthrough – Step 1.1
	Debugging the Code
	Debugging the Code

