CAMBRIDGE SYSTEMATICS

District Modeling Support

Kick-Off Meeting

presented to District 8 Staff presented by Cambridge Systematics, Inc. Ron West & Sean McAtee

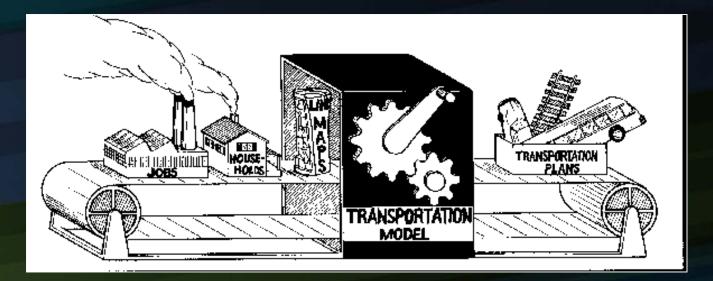
January 28, 2016

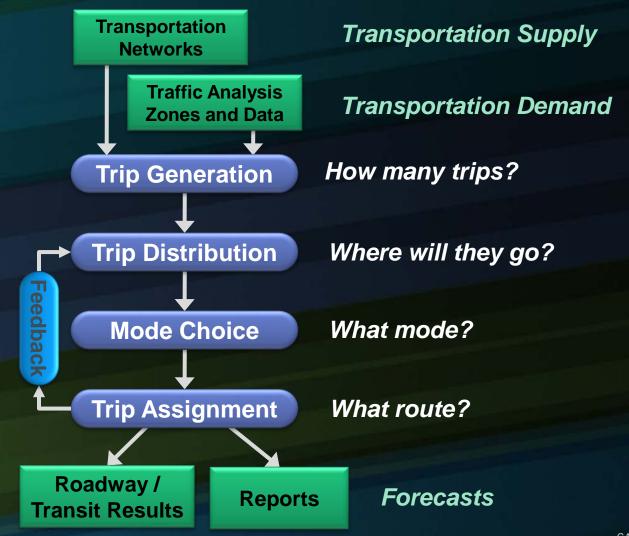
Morning Agenda

- About our team
- Modeling basics
 - » Opening the black box
 - » Example applications

Travel model

- Modeling at District 8
 - » Discussion with managers and modelers


Task Order Team



Travel Modeling Basics

Opening the Black Box

The Four Steps

Inputs

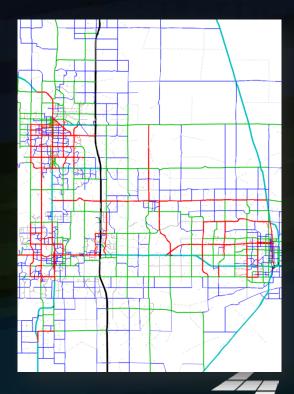
Roadway Networks

Transportation Networks

Socioeconom Data

> External Data

Special Generators


Model Parameters

Contains roadway characteristics

- Number of Lanes
- Roadway Type (Freeway, arterial, etc.)
- Area Type (CBD, Urban, Suburban, Rural)


Transit Networks

- » All fixed route transit service
- The model is sensitive to transit level of service (frequency, speed, coverage)
- » Local/Express Bus, BRT, Rail

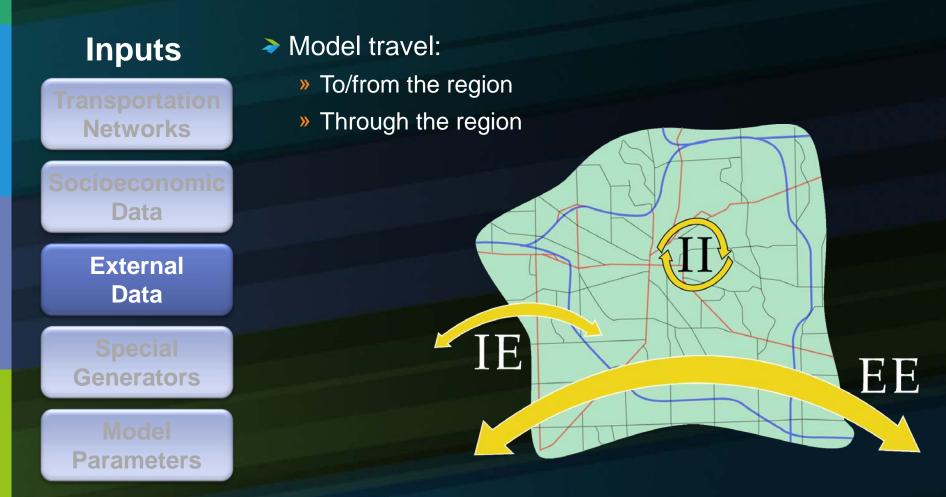
CAMBRIDGE SYSTEMATICS

- Identifies demand for travel
- Household data
 - » Average household size
 - » Median household income
 - » Number of resident workers
 - » Age of household residents
 - » And more...
- Employment data
 - » By 13 industries
 - » By Wage level

Special Generators

Model Parameters

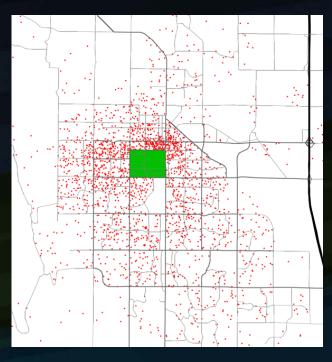
Inputs

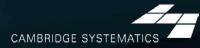

Networks

Socioeconomic

Data

Data





- Unique locations not well represented by employment data
 » SCAG's Special Generators:
 - Ports
 - Airports
 - » Potential Additional:
 - Large Warehouses
 - Specific study areas

Inputs
Transportation Networks
Socioeconomic Data
External Data
Special Generators
Model Parameters

Represent the way people behave

- » How many trips are made?
- » How far will people travel?
- » What impacts decisions about travel mode?
- » How does congestion impact travel?

Source Data

- » SCAG / Caltrans Household Travel Survey
- » On-Board Transit Surveys
- » Speed Surveys
- » Big Data
- » Validated to traffic counts

Information about each trip

- » Start/end
- » Time of day
- » Mode of travel
- » Purpose of trip
- » Trip time and distance

Outputs			
Trips by Mode			
Traffic Volumes			
Congested Speeds			
Transit Volumes			

Summary Information

By Time of Day

- » Daily
- » AM, PM, Mid-Day, Evening, Night
- » AM and PM Peak Hours

Turn Movements

- » Better estimated with assistance of base-year counts
- Congested speed based on volume

Mode

Traffic Volumes

Congested Speeds

> Transit Volumes

Summary Information

- > By Time of Day
 > Peak and Off-Peak
 > Daily sum
 > By route or route group
 > Also by stop, but with less accuracy
 > Useful for Big-Picture transit analysis
 - » Detailed analysis requires localized model refinement
- Transit trips are removed from the highway network

Trips by Mode

Traffic Volumes

Congested Speeds

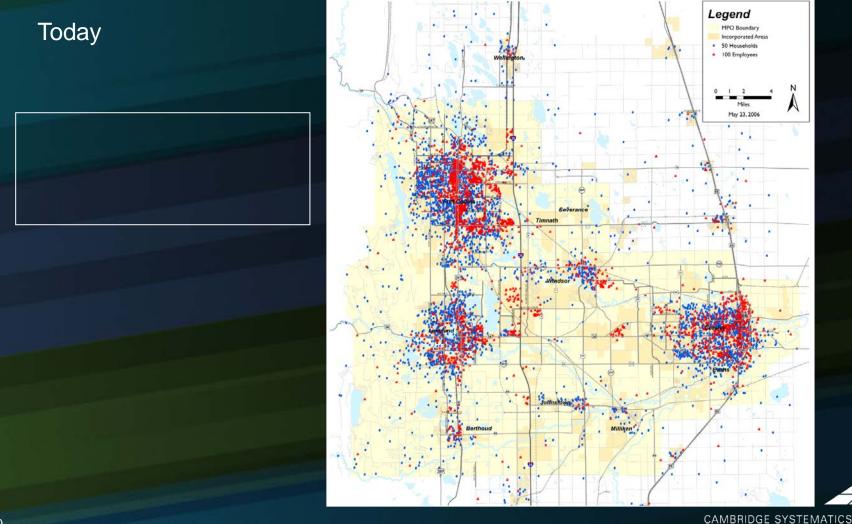
Transit Volumes

Summary Information

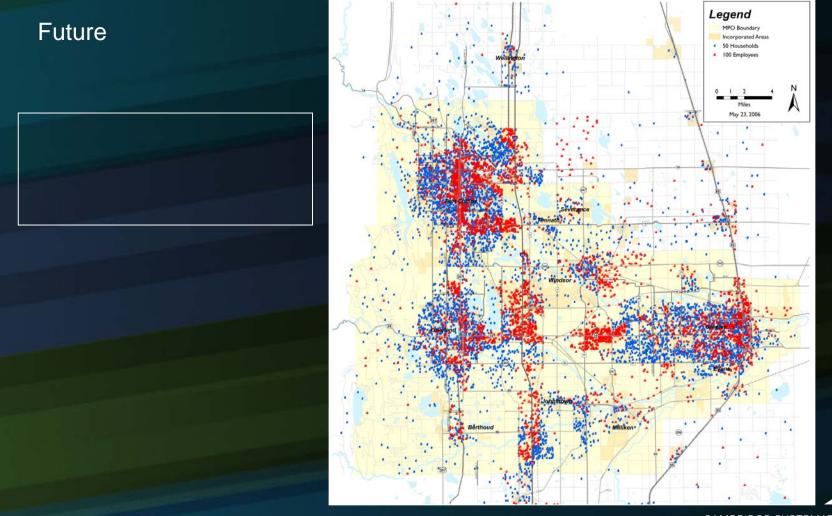
16

Performance Report **Outputs** » Summaries of model results » Useful for planners and engineers Mode Planning Tools » Maps and charts Volumes » Results presented for general understanding -VMT, VHT, Delay **Speeds** -Level of Service -Trip Lengths Volumes -Trip Patterns Summary

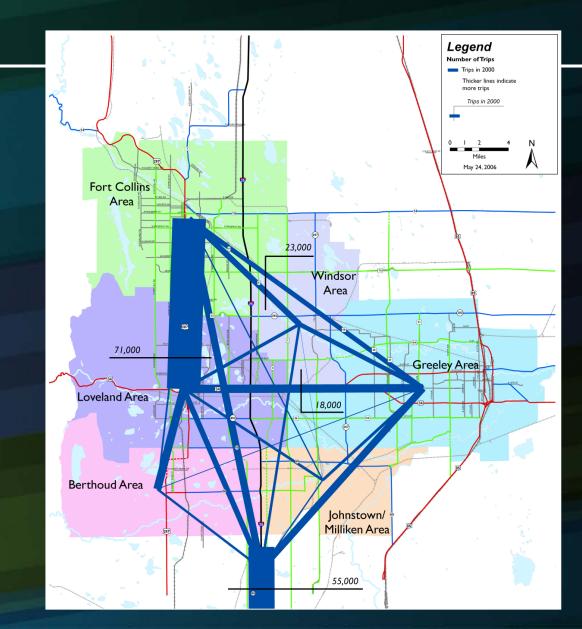
Information


Example Applications

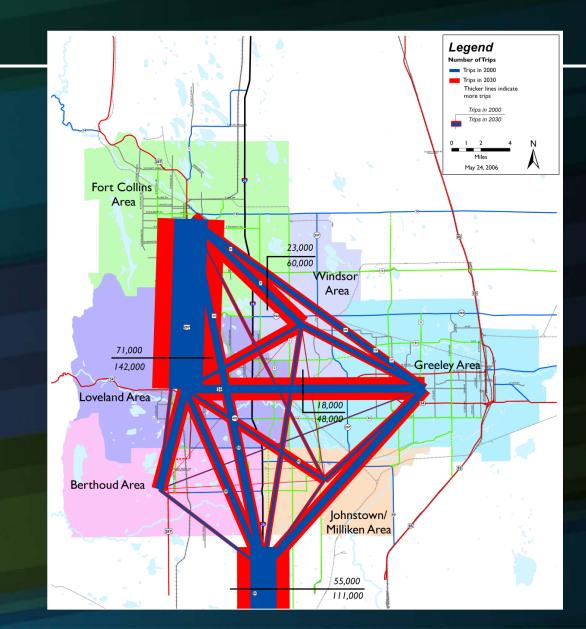
The model can estimate level of service to help identify problem areas.


	Uncongested		Congesting	Congested		
	Α	В	С	D	E	F
Driver Comfort	High	High	Some Tension	Growing Tension	Uncomfortable	Distressed
Average Travel Speed	Speed Limit	Close to Speed Limit	Close to Speed Limit	Some Slowing	Significantly Slower than Speed Limit	Significantly Slower than Speed Limit
Maneuverability	Almost Completely Unimpeded	Only Slightly Restricted	Somewhat Restricted	Noticeably Limited	Extremely Unstable	Almost None

CAMBRIDGE SYSTEMATICS

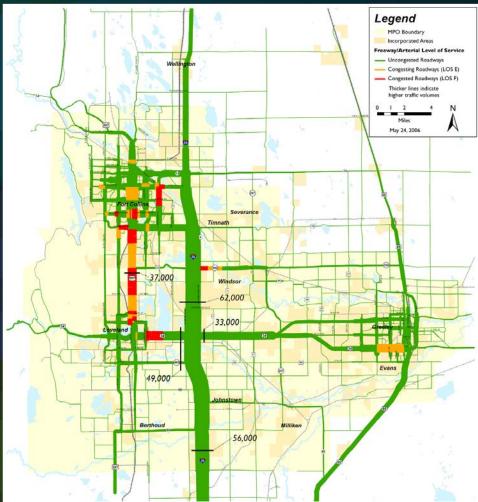

Household And Employment Growth

Household And Employment Growth


CAMBRIDGE SYSTEMATICS

Travel Patterns

Today



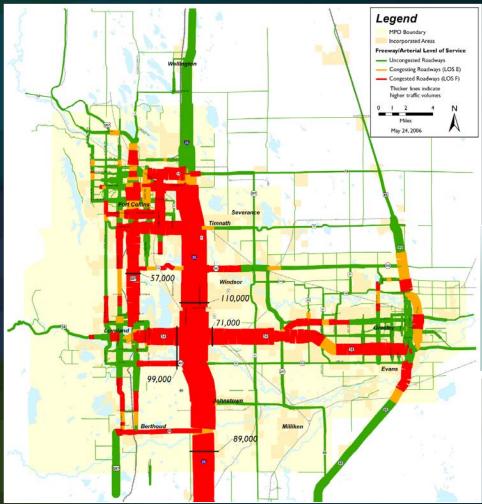
Travel Patterns

Future

Traffic Volumes And Congestion

	Toda	ay	
	Travel Tin	nes	
From/To	Today	2030	Increase
Fort Collins to Denver	73 Minutes	119 Minutes	46 Minutes (63%)

Travel Times				
From/To	Today	2030	Increase	
Fort Collins to Denver	73 Minutes	119 Minutes	46 Minutes (63%)	
Fort Collins to Greeley	37 Minutes	49 Minutes	12 Minutes (32%)	
Greeley to Loveland	29 Minutes	39 Minutes	10 Minutes (34%)	
Berthoud to Windsor	24 Minutes	37 Minutes	13 Minutes (54%)	

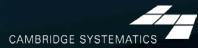


Traffic Volumes And Congestion

Fort Collins to Greeley

Greeley to Loveland

Berthoud to Windsor



		Futu	re	
		Travel Tir	mes	
From/To		Today	2030	Increase
Fort Collins to	to Denver	73 Minutes	119 Minutes	46 Minutes (63%)

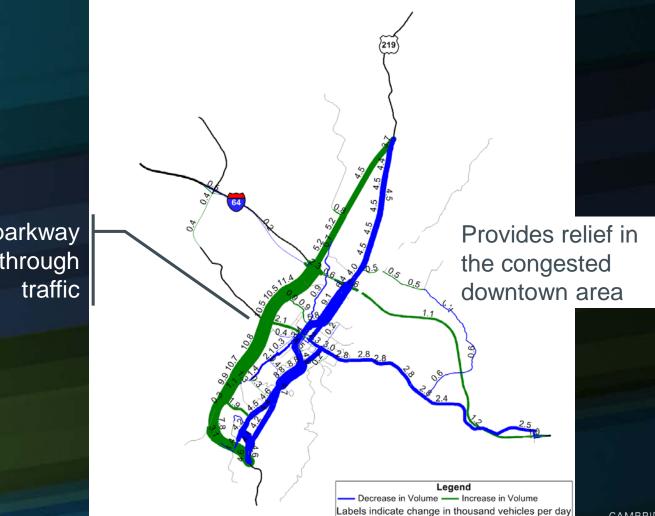
37 Minutes

29 Minutes

24 Minutes

49 Minutes

39 Minutes

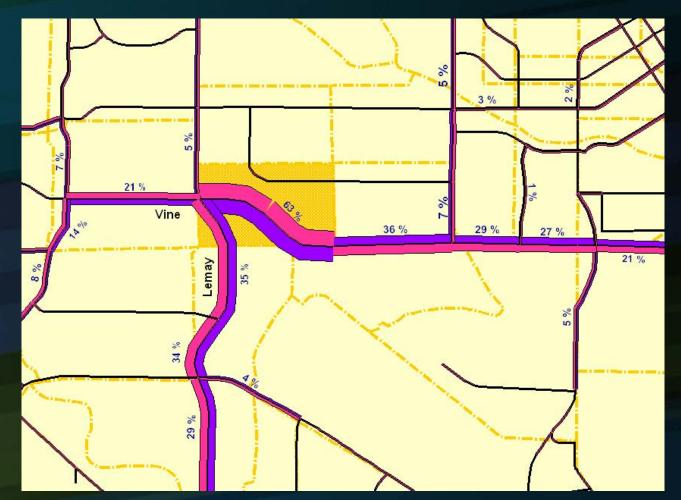

37 Minutes

12 Minutes (32%)

10 Minutes (34%)

13 Minutes (54%)

Where Does The Traffic Go?


A new parkway serves through traffic

Intersection Los Reporting

Traffic Impact Analysis

Travel Model

Testing Demand Changes

» Evaluate base, interim, and forecast year datasets

- Consider testing large development proposals (e.g., over 200 households or employees)
 - Use the model's trip distribution to compare to traffic study assumptions
 - Cross-check development model runs with ITE-based traffic studies

Use the model to test very small developments
 Test unreasonable changes to the jobs/housing balance

Testing Roadway Changes

Test large and medium-scale capacity changes

- Test different roadway alternatives
- Test a comprehensive roadway plan
- Test various corridor configurations

Don't),

Test scenarios that do not impact system capacity Try to model very small capacity or speed changes Rely on the demand model to test interchange configurations

Non-motorized Results

Focus on potential non-motorized demand

- E.g., 1, 2, and 5 mile trip bandwidths
- Identify good places for infrastructure improvements
- » Consider non-motorized model results to be a rough estimate
 - The model is only one tool to aid in analysis

Expect detailed numbers

- YES: "There is a high demand for a new bike lane in this corridor"
- NO: "This new bike lane will result in X new bike trips"

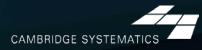

Transit Results

Evaluate major system adjustments

- Test large route changes
- Focus on a system-wide results

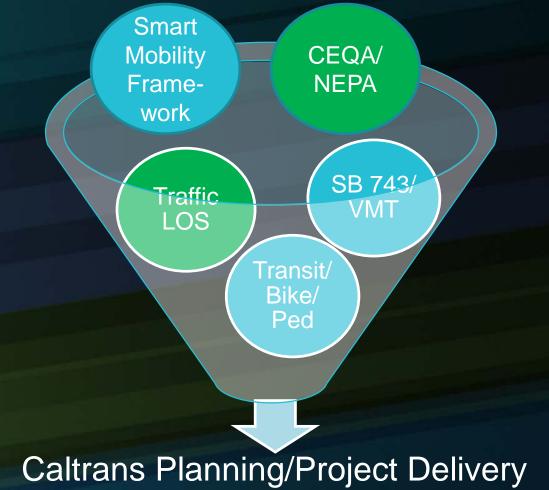
Test fine tuning of route alignments

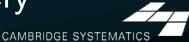
- Expect detailed forecasts by transit route or transit stop
 - This information is available, but must be interpreted carefully by a transit professional



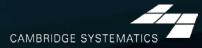
Traffic Results

- Post process traffic volumes based on counts
- Focus on forecast growth rather than values
- Consider corridors as a whole
- » Use the model to plan freeways, expressways, and arterials


Rely on raw model volumes


- Expect detailed collector and intersection forecasts
 - This information is available, but must be interpreted and may require additional post processing

District 8 Modeling Activities


A Changing Planning Framework

District 8 Modeling Context

- Staff retention
- District modelers generally apply models (forecasting)
- MPO/County models increasingly complex
 - » SB 743, AB 32, SB 375
 - » Need to understand multiple models
 - RivTAM
 - SBTAM
 - SCAG Model
 - Model updates SCAG 2016 RTP/SCS is coming soon

Modeling Group as Service Bureau

Caltrans Management

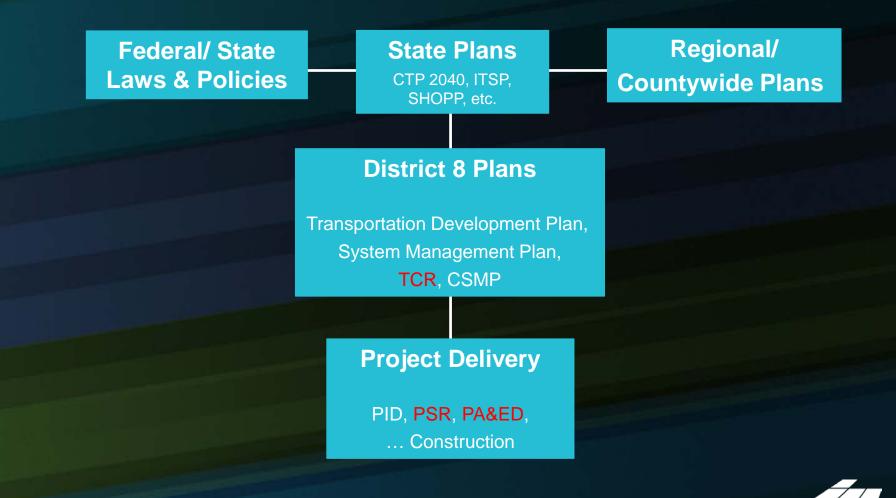
Caltrans Planning Staff

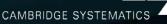
Direct Supervisors

Other Caltrans Technical Staff

Caltrans PMs

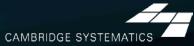
Public Agency Modelers


Consultants

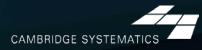

Others

Time sensitive Critical path Credible

District Planning Process



Project Delivery



Modeling activities are generally front-loaded: This applies for both project delivery and for planning activities

Transportation Concept Reports

- All State Highways
 - » Updated periodically
- Generally straightforward data requirements Except when they are not
 CSMP
- Base year / Horizon year
- Auto / Truck splits
 - » AADT
 - » Peak hour splits
 - » VMT
 - » LOS, V/C
- Alternative modes

TCR Reporting – Example 1

54-1 Location Description: I-5 IC to the I-805 IC							
WESTBOUND							
BASE YEAR (BY): 2010	HORIZON YEAR (HY): 2040 HY AADT: 72,575						
BY AADT: 58,000							
BY LOS: C	HY LOS with RTP Improvements:C						
	HY LOS with no RTP Improvements: D						
BY VMT: 110,200	HY VMT: 137,892.5						
BY Vehicle Occupancy Rate: Not available	HY Vehicle Occupancy Rate: Not available						
BY Daily Vehicle Hours of Delay (35 MPH): Not available	HY Daily Vehicle Hours of Delay (35 MPH): Not available						
BY Truck Traffic AADT: 1508	HY Truck Traffic AADT: 1887						
BY Total Trucks (% of AADT): 2.60%	HY Total Trucks (% of AADT): 2.60%						
BY 5+ Axle Truck Traffic AADT: 109	HY 5+ Axle Truck Traffic AADT: 136						
BY 5+ Axle Trucks (% of AADT): 0.19%	HY 5+ Axle Trucks (% of AADT): 0.19%						
BY Peak Hour Volume: 4,250	HY Peak Hour Volume: 5,443						
BY Peak Hour VMT: 8,075	HY Peak Hour VMT: 10,341.7						
BY Peak Hour V/C: 0.64	HY Peak Hour VC: 0.82						
BY Peak Hour Average Speed: >60 mph	HY Peak Hour Average Speed: >60 mph						

Peak Period Length: 1 hour

Peak Hour Time of Day: 0700-0

Peak Hour Directional Split: 65%

Bottlenecks: No reoccurring observed bottlenecks

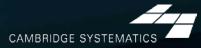
42

TCRs – Model Data

Select roadway segments

- Observed Base Year Data
 - » Traffic Counts, PeMS, Caltrans Count Book

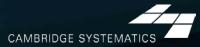
Travel Model


- » Base horizon + Horizon year
- » Horizon year: With and without projects

Adjust future forecasts

» Observed + model growth

HCM

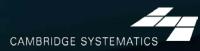

» For LOS – may involve Traffic Ops

TCR Reporting – Example 2

								2020						
FUTURE 2020								CONCEPT						
			2020				2-WAY	TRUCK						
	POST	LIMIT	NO	R/U	2020	PEAK	PEAK	PEAK	DIRECT	2020	2020	FACILITY	Lanes	LOS
Seg.	MILE		BUILD	UB	ADT	Hr	Hr Vol	Hr	SPLIT	V/C	LOS		Added	
1	0.0/R2.4	Jct I-15 to Main St./Montara Road	4 MF	U	30,000	10.8%	2,700	10%	65%	0.41	А	4 MF	0	А
2	R2.4/7.2	Main St/Montara Road to "A" St	4 MF	R	25,000	10.8%	2,700	10%	65%	0.41	А	4 MF	0	А
3	R7.2/107.2	"A" St to Goffs Road	4 MF	R	22,500	12.4%	2,800	12%	70%	0.46	В	4 MF	0	В
4	15.0/44.2	Goffs Road to Jct SR 95N	4 MF	R	20,000	12.5%	2,500	14%	70%	0.47	В	4 MF	0	В
5	44.2/49.5	Jct SR 95N to Jct SR 95S	4 MF	R	19,000	12.4%	2,350	14%	70.0%	0.44	В	4 MF	0	В
6	49.5/59.4	Jct SR 95S to Arizona State Line	4 MF	R	15,000	10.0%	1,500	12%	75.0%	0.37	В	4 MF	0	В

District 8 I-40

Project Study Report


- Early Project Delivery Document
 - » Inform Purpose and Need
- Travel Model Forecasts Required
 - Traffic counts collected specifically for project (plus off the shelf data HPMS)
 - » Big Data (Origin-Destination)
- Base Year / Opening Year / Horizon Year
 - » Mainline, ramps, intersections
 - » Detailed, link level analyses
- Auto, truck, multimodal
- Traffic assignment to inform HCM
 - » Changes in VMT/GHG?

PSR Example

Segr		Balanced 2040 No- Project			
From	То	Туре	AM Peak Hour (vph)	PM Peak Hour (vph)	
Santa Anita Ave On Bamp	Peck Rd SB Off-Ramp	Mainline	0	0	
Santa Anita Ave On-Ramp	Peck kd 3b Oll-Kallip	Express	214	1,885	
Peck Rd SE	Peck Rd SB Off-Ramp				
Peck Rd SB Off-Ramp	Peck Rd NB Off-Ramp	Mainline	6,114	4,933	
Peck Rd SB Oll-Ramp	Peck ku NB OII-kamp	Express	214	1,885	
Peck Rd N	Off-Ramp	521	704		
Peck Rd NB Off-Ramp	Valley Blud On Bamp	Mainline	5,593	4,229	
	Valley Blvd On-Ramp	Express	214	1,885	
Valley Blv	On-Ramp	234	167		
Valley Blyd On-Pamp	Stewart St On-Pamp	Mainline	5,827	4,396	
Valley Blvd On-Ramp	Stewart St On-Ramp	Express	214	1,885	

SR 60/I-605/I-10 PSR

Project Approval and Environmental Document

- Purpose & Need
- Environmental document
 - » CEQA, NEPA
 - Public review

Travel model forecasts required – support traffic microsimulation

- » Traffic counts collected specifically for project
- » Big Data (Origin-Destination)

Base year / Opening year / Horizon year
 Primarily trip tables to inform traffic analysis
 Traffic assignment may be conducted

- Auto, truck, multimodal
- SB 743 VMT analysis


Other Areas Where Model Data Is/Can Be Used

Discussion

Morning Wrap-Up



Model steps

- » Basic model components
- » Recap of validation and post-processing

SR 60 project

- » Work plan
- » Master schedule
- Review of homework
 - » Separate presentation
- Next steps

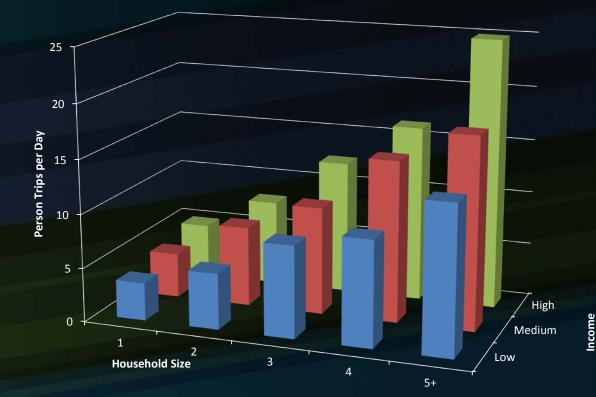


Model Steps

Trip Generation: How Many Trips?

- Based on household survey
- Different trip purposes
- Generate all trips*
 - Walk
 - Bike
 - Transit
 - Auto

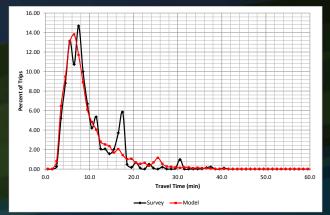
* This is different than ITE Trip Generation, which only considers vehicle trips



Trip Generation: How Many Trips?

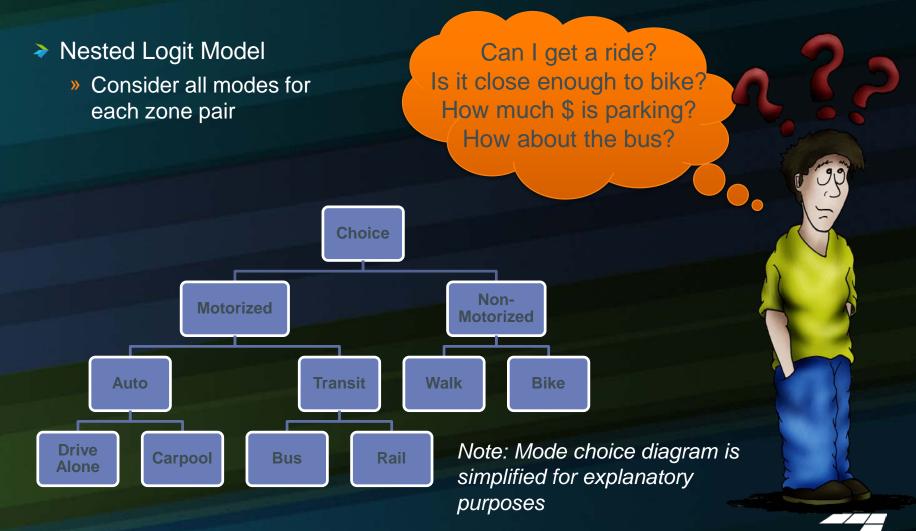
Cross-classified production rates

- » Household size & income
- » Household Workers & Income


Trip Distribution: Where will they go?

Match

» Productions & attractions

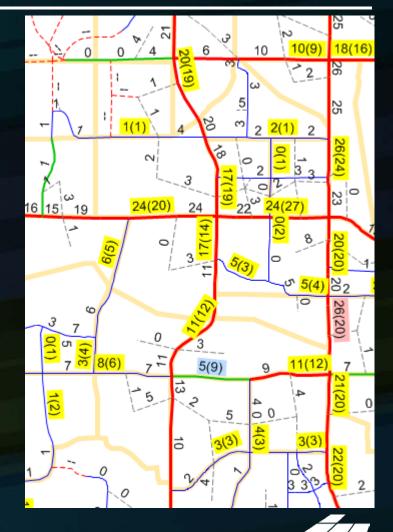

Survey Data

- » Trip length distributions
- » Subregion to subregion patterns

The *Gravity* concept can be used to model travel!

Mode Choice: What Mode?

Traffic Assignment: What Route?


- 4 to 5 time periods (depending on model version)
- Account for localized and peak period congestion

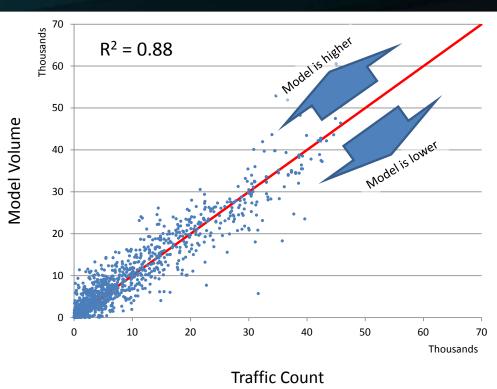
Model Validation / Post-Processing

Matching Local Data

CAMBRIDGE SYSTEMATICS

- Surveys & reasonableness checks
 - » Final Trip Rates
 - » Travel Times
 - » District to District travel patterns

Traffic count data


» VMT by subregion, facility type, and area type

» Corridor and localized review

Matching Counts

How does the model work for today

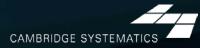
- » Statistics
 - R-Squared
 - % RMSE
 - Volume / Count Ratio
 - Etc...
- » Screenlines
- » Corridor Review
- » Highest Errors

Example Only



Testing Sensitivity

Dynamic validation


- » Observe how the model reacts changes
 - Test big and small changes
 - Test the base and forecast year
- » Do results make sense?

Post Processing: Reconciling to Counts

Is the model too low in the base year?
Then the forecast is increased by the same amount
Is the model too high in the base year?
Then the forecast is decreased by the same amount
Both *Post Processed* and *Raw* volumes are available for analysis

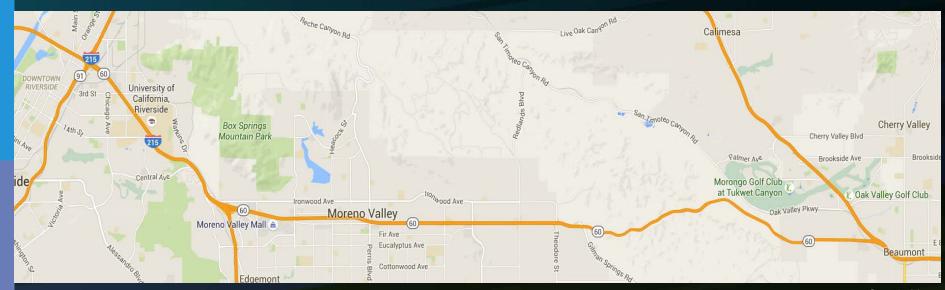
Post Processing: Reconciling to Counts

Use % Growth (e.g., traffic increases by 30%) $Forecast_{ratio} = Raw Volume \cdot \frac{Count Volume}{Raw Base Year Volume}$

Use Volume Growth (e.g., traffic increases by 5,000 vehicles) Forecast_{diff} = Raw Volume + Count Volume - Raw Base Year Volume

Use the Average

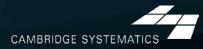
Forecast_{ava}


$$Forecast_{ratio} + Forecast_{diff}$$

2

SR 60 PROJECT

SR 60 Project Area



Google Maps

SR 60 Feasibility Study

- 1) Existing Conditions (2014)
- 2) 2035 RTP Build Out Conditions
- 3) Alt 2 + Improvement Projects from TCR Concept build out
- A) Alt 2 + 2-mixed flow lanes each direction segment 3, add 1-mixed flow lane each direction segment 4, add 1-HOV lane each direction segment 6, add 1-HOV lane W/B
- 5) Alt 2 + 1-Truck lane in W/B direction plus Transit/Park & Ride/Bicycle/Pedestrian
- 6) Alt 2 + Transit/Park & Ride/Bicycle/Pedestrian
- 7) Alt 2 + 1-Truck lane in W/B direction
- 8) Alt 2 + 1-HOV lane in W/B direction

Summary of Improvements by Scenario

		Improvements by Vehicle Class/Mobe						
Scenario	Year	Mixed Flow	HOV	Truck	Transit/ Bike/Ped			
1. Base Year	2012							
2. RTP Build Out	2035							
3. TCR Build Out	2035	Х	Х					
4. Mixed Flow +	2035	Х	Х					
5. WB Truck & Transit	2035			Х	Х			
6. Transit	2035				Х			
7. WB Truck	2035			Х				
8. WB HOV	2035		Х					

SR 60 Study

Development of purpose and need

» Feasibility study has already documented deteriorating traffic LOS & other issues

Forecasting decision points:

- » TCR or PSR level of analysis
 - Something in-between?
- » Wait for SCAG 2016 RTP model?
 - Updated population/employment projections
 - Updated trip distribution patterns
 - Updated model parameters
- » Continue with existing model?
 - RivTAM or 2012 SCAG RTP Model

Data Collection

Traffic data

- » Can new mainline traffic counts be collected?
- » Intersection counts
- » Ramp volumes
- » PeMS
- » Caltrans traffic reports
- » Other sources of data (example: SR 60 Truck Lanes EA)

Transit ridership

- » Boardings
- » On-board surveys

Big data

» Origin-destination data

Performance Measures

- What are desired outcomes?\
- Traffic LOS
 - » HCM-level analysis
 - » SB 743 VMT reductions
 - Induced travel
 - » Travel patterns
 - Local
 - Intercounty within SCAG Region
 - Interregional/Interstate
- Analysis years
 - » Horizon year … current SCAG Model horizon (2035)
- Time periods
 - » Peak hours, daily, AADT

Modes of Travel

Multimodal analyses

- » Transit potential
- » Non-motorized
 - Mobility options

Truck movements

» Warehousing and industrial land uses

Moreno Valley Logistics Center

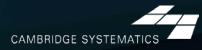
SB 743 Analyses

» New CEQA thresholds of significance – VMT reduction

Revised Proposal on Updates to the CEQA Guidelines on Evaluating Transportation Impacts in CEQA

Implementing Senate Bill 743 (Steinberg, 2013)

Januar<mark>y</mark> 20, 2016



- Refine/finalize work plan
- Master schedule
 - » In-person meeting dates
- Immediate next steps

Morning Wrap-Up

