CSTDM Training

VMT Analysis for SB 743

presented to Caltrans

presented by Cambridge Systematics, Inc. Mary Martchouk, Ron West

September 12, 2016

CAMBRIDGE SYSTEMATICS

SOUTH

San Diego

15)

10

Think > Forward

VMT Analysis Background

- New SB 743 guidelines require project to be evaluated in terms of VMT impact
- Regional models or the California Statewide Travel Demand Model (CSTDM) can be used
 - Regional models may be better at capturing VMT due to more detailed highway networks and trip patterns
 - STDM VMT summaries are readily available and can be obtained from Caltrans via website? http://www.dot.ca.gov/hq/tpp/offices/omsp/SB743.html
 - Similar summaries can be developed for regional models

VMT Analysis

- New projects may need to be evaluated using VMT and trip length information for either home or work TAZ
- ➤ Residential projects \rightarrow home zone information:
 - » Household VMT by TAZ or Home-based VMT by TAZ
 - » Home-based (HB) work, HB shopping, HB other trip lengths
- \rightarrow Office projects \rightarrow employment zone information:
 - » Employee household VMT by TAZ and HB work VMT by TAZ
 - » Worker commute length by TAZ
- Retail projects evaluated in terms of total VMT change
 Retail may increase or decrease VMT due to re-routing

SB 743 Thresholds

Thresholds are used to determine whether the project will have a less than significant impact on VMT

Residential projects:

- » Existing city household VMT per capita minus 15% AND
- » Existing regional household VMT per capita minus 15%

Office projects:

» Existing regional VMT per employee minus 15%

Retail projects:

» Net decrease in VMT

SB 743 Thresholds Cont'd

- Local-serving retail creates a less than significant impact
- Regional-serving retail can lead to longer trips and needs to be evaluated in terms of net change in VMT
- Mixed-use project components should be evaluated independently
 - » Can take credit for internal capture
- Transportation projects (such as adding highway lanes) need to be evaluated in terms of impact on VMT
 - » Change in VMT calculated using a model or elasticites
 - » Threshold as of 2015: 2,075,220 VMT/year

VMT Change: Residential

- Step 1. Determine average household VMT/capita or home-based VMT/capita where at project location
 - » Based on regional model or CSTDM
- Step 2. Compare the VMT/capita from above to the regional and city thresholds (VMT/capita 15%)
 - » If VMT/capita from step 1 lower than both thresholds, project assumed to have less than significant impact on VMT (you're done!)
- Step 3. Use CalEEMod to estimate the project VMT
 - » Use project area specific trip lengths
- Step 4. Consider mitigation measures in your analysis (they help the project meet threshold)

VMT Change: Office

- Step 1. Determine average VMT/employee or homebased-work VMT/employee at project location
 - » Based on the regional model or CSTDM
- Step 2. Compare the VMT/employee from above to the regional threshold (VMT/employee 15%)
 - » If VMT/capita from step 1 is lower than threshold, project assumed to have less than significant impact on VMT (you're done!)
- Step 3. Consider mitigation measures in your analysis

VMT Change: Retail

- Locally-serving retail is assumed to have a less than significant impact on VMT (you're done)
- For regionally-serving retail, a travel demand model run needs to be conducted to evaluate the impact of rerouting and changes in mode choice on VMT

VMT Change: Transportation Projects

- Only need to consider when the project can lead to an induced demand and hence higher VMT
 - » Addition of through lanes on existing or new highways, including general purpose lanes, HOV lanes, peak period lanes, auxiliary lanes, and lanes through grade-separated interchanges
 - Less Than Significant: pavement rehab, maintenance, transit, bike, pedestrian https://www.opr.ca.gov/docs/Revised_VMT_CEQA_Guidelines_Proposal_Januar y_20_2016.pdf
- Step 1. Determine VMT elasticity from research based on the facility functional type
 - » Elasticity = %Change in VMT / %Change in lane miles
- Step 2. Calculate % Change in lane miles as % of total lane miles for the functional class and multiply by total functional class miles
- Step 3. Compare the resulting VMT/year to the threshold

SB 743 Case Study 1

- New mixed use residential and retail development located at the corner of Stockton Blvd and T St.
 - » 214 multifamily units
 - » 24 single family houses
 - » 6,000 square feet of locally-serving retail
- Locally-serving retail has less than significant impact
 - » Only used to capture internal residential trip making activity

Model Information

- CSTDM summaries were used to get the following information:
 - » Project TAZ: 538
 - » VMT per capita: 12.1
 - » Home-based VMT per capita: 8.4
 - » HBW trip length: 8.08 miles
 - » HBShop trip length: 4.32 miles
 - » HBO trip length: 3.81 miles

Trips Analysis

- SACOG average VMT rate: 16.8 VMT per capita
- City of Sacramento average VMT rate: 15.8
- SB 743 guidelines suggest less than significant project impact if trip rate is 15% below regional average
- This project's overall trip rate is 28% below regional average and 23% below the city threshold
- No further analysis is needed but will be conducted for demonstration purposes

CalEEMod Inputs

Project Characteristics							☑ Cascade Defaul
ct Detail					- Pollutar	Import csv	Default Undo
roject Name							Select All Clear All
roject Location	County	•	Sacramento	•		Pollutant Selection	Pollutant Full Name
/indspeed (m/s)		3.5					Reactive Organic Gases (ROG)
recipitation Frequency (days)		58				V	Nitrogen Oxides (NOx)
recipitation frequency (days)		50					Carbon Monoxide (CO)
limate Zone	6	•				V	Sulfur Dioxide (SO2)
and Use Setting	Urban	.					Particulate Matter 10um (PM10)
and obe bearing							Particulate Matter 2.5um (PM2.5)
perational Year	2016	-					Fugitive PM10um (PM10)
							Fugitive PM2.5um (PM2.5)
/ Information							Biogenic Carbon Dioxide (CO2)
							Non-Biogenic Carbon Dioxide (CO2)
Ir User Defined is selected, user fr	iust speciry data sou	rce in Remarks				V	Carbon Dioxide (CO2)
elect Utility Company				-			Methane (CH4)
							Nitrous Oxide (N2O)
O2 Intensity Factor (lb/MWh)		0					CO2 Equivalent GHGs (CO2e)
H4 Intensity Factor (lb/MWh)		0					
20 Intensity Factor (lb/MWh)		0					
							Nart SS
arks							

CalEEMod Inputs

IEEMod	.2013.2.2			CALLERS .	Same of States States		Summer of	
me I	Project Characteristics	Land Use Construction	n Operational Ve	getation Mitigation	Reporting Help			
							E	Cascade Defaults
	Land Use							
	Lund Obe							
D					Imp	ort csv	Default	Undo
	Land Use Type	Land Use Subtype		Unit Amount	Size Metric	Lot Acreage	Square Feet	Population
	Residential	Apartments Mid Rise		214	Dwelling Unit	5.63	214,000	571
	Residential	Single Family Housing		24	Dwelling Unit	7.79	43,200	64
	Retail	Strip Mall		6	1000sqft	0.14	6,000	0
*								
Рор	ulation	635						
Lot	Acreage	13.56						
Rei	marks Case study					[<< Previous	Next >>

CalEEMod Inputs

								-	_			_		-		-				
ne F	roject Characteristics	s Land Use	Construc	tion	Operati	onal	Vegetat	ion M	litigatio	n Rep	orting	Help						Ca	ascade D	efaults
erat	ional - Mobile																			
Cra	ional Mobile																			
icle T	rips Vehicle Emissions	Road Dust																		
												1	-						Unda	
											L	Impo	rt csv			Jerault			Unuo	
									Non	Non	Non									
		Cian Matria	WkDy Trip	Sat Trip	Sun Trip	Res H-W	Res H-S	Res H-O	Res C-C	Res C-W	Res C-NW	Primar	Divert	Pass-B	Res H-W	Res H-S	Res H-O	Non Res	Non Res	Non Res
	Land Use SubType	Size Metric	(/size (/day)	(/size (/day)	(/size (/day)	Length (miles)	Length (miles)	Length (miles)	Trip Length	Trip Length	Trip Length	(%)	(%)	(%)	Trip (%)	Trip (%)	Trip (%)	Trip	Trip (%)	Trip
			,,,		/00//		((miles)	(miles)	(miles)									(,0)
	Apartments Mid Rise	Dwelling Unit	6.59	7.16	6.07	8.08	4.32	3.81	0	0	0	86	11	3	46.5	12.5	41	0	0	0
	Single Family Housing	Dwelling Unit	9.57	10.08	8.77	8.08	4.32	3.81	0	0	0	86	11	3	46.5	12.5	41	0	0	0
	Strip Mall	1000sqft	44.32	42.04	20.43	0	0	0	5	10	6.5	45	40	15	0	0	0	64.4	16.6	19
																<< Prev	vious		Nex	>>
Rema CST	rks DM															<< Prev	ious		Nex	>>
CST	rks DM															<< Prev	rious		Nex	

Results

Unmitigated VMT:

- » Apartments mid rise= 2,673,841
- » Single Family Housing=433,117
- » Total=3,106,958
- Based on AHSC GGQM off model calculation, project VMT reduction is 40% (max possible)
- Resulting VMT: 1,864,175
- Resulting VMT per capita: 2,936
- Threshold based on 85% of regional VMT per capita: 3,971
- While regional models may have different VMT numbers, the results of the analysis should be similar

SB 743 Case Study 2

Medical Center in Mission Viejo

- » 110,000 square feet of space located between Crown Valley Pkwy and Marguerite Pkwy
- VMT/employee in the SCAG region:
 - » 1. Add Work VMT table to CSTDM TAZ layer
 - » 2. Join SCAG region layer to CSTDM TAZ+VMT layer using spatial join
 - » 3. Extract TAZs within SCAG region and calculate average VMT per employee
 - » 4. Locate the project and determine VMT per employee
 - » 5. Check against 85% of regional VMT per employee threshold

Model Information

- CSTDM summaries were used to get the following information:
 - » Project TAZ: 6043
 - » VMT: 15.3 miles per employee

Trips Analysis

- SCAG average VMT rate: 15.9 VMT per employee
- SB 743 guidelines suggest less than significant project impact if trip rate is 15% below regional average (13.5 VMT/employee)
- This project's overall trip rate is above the threshold, hence it will have significant impact on VMT
- Need to consider mitigation strategies to reduce the VMT/employee by 12%

SB 743 Case Study 3

- Addition of 2.2 lane-miles of freeway in Kern County
- Most recent study on induced travel reveals an elasticity of 1.03 for freeways
- 2.2 lane-miles out of 670.47 lane-miles of California highway including freeways/expressways corresponds to 0.328% increase
- Change in VMT = Change in lane-miles of freeways/ expressways * Total VMT on freeways/expressways * Elasticity
 - » 0.328% * 2,333,940,000 * 1.03 = 7,884,982 VMT
- Exceeds the threshold of 2,075,220 VMT/year and requires mitigation

