Think >> Forward ## Synchro Training – Day 2 Caltrans On-Call Traffic Simulation Training presented to Caltrans District 9 presented by Cambridge Systematics, Inc. John Duesing and Richard Ge June 6th, 2018 ## Agenda - Day 2/ Part 3: Hands-on Exercise: Main Street Corridor Synchro Model (9am –Noon) - Data Preparation - Model Coding - Extract and Report Existing Conditions ### Agenda - Day 2/Part 4: Advanced Synchro Applications (1pm – 4pm) - Signal Timing optimization - Incorporating Future Year Forecasts - Geometric changes in lanes, turning bays, lane diets - Roundabouts; - June 7 Advanced applications, Review and Questions (9am-noon) - Richard will be available for the last day to review any procedures, software questions, or demonstrate analyzing other alternatives. ### Training Session Overview - Traffic Analysis Basics - Synchro Introduction - Data Preparation - Synchro Operations - Hands-On Exercise - Advanced Applications #### Hands-On Exercise – Volume Data - Sample Data Calculation Sheet - » Identifying Peak Hour - » Heavy Vehicle % - » Peak Hour Factor (PHF): busies 15-min period Study Name Mannheim & IL 19 AM Start Date 05/02/2018 Start Time 7:00 AM | | | uthbound S
Southbound | | | estbound S
Westbound | | | orthbound S
Northbound | t. | | astbound St
Eastbound | t. | | Hourly | Heavy | | |--------------|------|--------------------------|-------|------|-------------------------|-------|------|---------------------------|-------|------|--------------------------|-------|-----------|--------|-------|------| | Start Time | Left | Thru | Right | All Mvnts | Volume | Veh % | PHF | | 7:00 AM | 32 | 261 | 131 | 129 | 187 | 33 | 20 | 265 | 132 | 135 | 190 | 14 | 1529 | 6637 | | | | 7:15 AM | 22 | 272 | 113 | 143 | 163 | 16 | 16 | 365 | 188 | 161 | 160 | 14 | 1633 | 6646 | 0.09 | 0.94 | | 7:30 AM | 28 | 253 | 121 | 120 | 235 | 29 | 22 | 350 | 153 | 191 | 193 | 21 | 1716 | 6523 | | | | 7:45 AM | 37 | 312 | 123 | 131 | 190 | 21 | 14 | 429 | 145 | 180 | 158 | 19 | 1759 | 6391 | | | | 8:00 AM | 21 | 220 | 96 | 127 | 193 | 36 | 14 | 351 | 131 | 201 | 133 | 15 | 1538 | 6060 | | | | 8:15 AM | 26 | 230 | 115 | 104 | 173 | 30 | 18 | 370 | 143 | 170 | 118 | 13 | 1510 | | | | | 8:30 AM | 23 | 230 | 90 | 138 | 165 | 18 | 13 | 383 | 150 | 211 | 147 | 16 | 1584 | | | | | 8:45 AM | 16 | 226 | 96 | 104 | 166 | 34 | 21 | 344 | 132 | 143 | 128 | 18 | 1428 | | | | | Max Hourly | | | | | | | | | | | | | | 6646 | | | | AM Peak Hour | 108 | 1057 | 453 | 521 | 781 | 102 | 66 | 1495 | 617 | 733 | 644 | 69 | | | | | #### Hands-On Exercise - Volume Balancing #### Hands-On Exercise – Signal Data - Signal Information - » Timing - » Phasing - » Coordinati | TRAFFIC AND LIGHTING
TRAFFIC SIGNAL TIMING | DIVIS | ION | | | | lea | 115 | 200 | P | TYPE 170 PROGRAM | | |---|------------|----------|-------|----------|--------|-----------|-----------|------|-----------|--|---| | Intersection: | | | | VA | J.J.FY | RI | @ A · | LUI. | 15 4 | read 4-16 | | | T.S. No.: | 5355 | | | | TR | appi | DRIL | C WO | RKS | CE33 | Date Requested: 1-7-13 HCH By: DFA Date Completed: 2 11/13 By: NA | | PHASE TIMING | | | Key | strokes | : F+F | | | | | PREEMPTION | PHASE FUNCTION FLAGS | | Phase # | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Keystrokes: F + E + Function | Keystrokes: F + F + Function | | Minimum Walk | To | <u> </u> | 0 | - | 0 | 0 | 7 | + | 10 | RxR Select (0, 1, 2, 3) 0 | 1 2 3 4 5 6 7 | | Flashing Don't Walk | | | - | | - | _ | - | ├_ | _ | RxR Track Clearance 1 | Phases Permitted | | riashing bon t walk | _ 1 | | 0 | | 0 | 0 | 14 | | | RxR1 All Red 2 RxR2 Maximum (Minutes) 3 | Red & Yellow Lock 2 X X | | Minimum Green | 2 | | 10 | | 7 | 8 | 10 | | | RxR2 Maximum (Minutes) 3 Free Time After Preempt 4 | Minimum Vehicle Recall 3 X X | | Queue Maximum | 3 | | 0 | - | 0 | 0 | 0 | ├─ | - | EV - A Delay 5 | Pedestrian Recall + Rest in Walk 4 | | Add-10: 11: 1 | | - | - | - | - | - | - | _ | _ | EV - A Clearance 6 | Green Rest (Set Delay F-0-8) 5 | | Added Green/Actuation | 4 | | 2.2 | | 0.0 | 0.0 | 2.2 | | | EV - B Delay 7 | Red Rest (Set Delay F-0-7) 6 Semi Traffic Actuated Mode 7 | | Vehicle Extension | 5 | | 4.5 | | 3.5 | 2.5 | 4.5 | | 1 | EV - B Clearance 8 EV - C Delay 9 | Double Entry 8 | | Maximum Gap | 6 | | 5.5 | _ | 3.5 | 2.5 | 5.5 | - | - | EV - C Clearance 9 | Maximum Vehicle Recall 9 | | Minimum Gap | - | | - | | | | - | | - | EV - D Delay b | Restricted Phases A | | | 7 | | 3.0 | | 3.5 | 2.5 | 3.0 | | | EV - D Clearance C | Protected/Permissive Left Turn b | | Max Extension 1 (Free) | 8 | | 50 | | 35 | 20 | 50 | | | EV Maximum (Seconds) d | Barrier Recall C First Phases After Start Up | | Max Extension 2 (Coord) | 9 | - | 130 | | 35 | 20 | 400 | - | - | EV Delay/Clearance Timer E | Walling St. 111 | | | DARKET BEE | OVLP | OVLP | OVLP | _ | | 130 | | - Innovan | RxR Delay/Clear/Mark Timer F EV AFTER RxR PREEMPTION | Overlap Yellow Start Up: | | | | A | B | C | D | OVLP
E | OVLP
F | | | EV Type Select F-C-0 | (Parents must be Yellow Start Up) F X X | | Ovlp Green Extension | A | * | | 3.0 | | 0.0 | | | | Select: EV - A Enter 16 | LAG PHASE FLAGS 1 2 3 4 5 6 7 | | Ovip Yellow Clearance | b | * | | 5.0 | | 3.0 | _ | | | EV - B Enter 32 | Lag Free d-F-0 X X X | | Ovip Red Clearance | - | * | | | _ | | - | | | EV - C Enter 64 | Lag Dial 1 d-F-1 X X X | | O TIP Not Clearance | ° | | | 1.0 | | 1.0 | | | | EV - D Enter 128 Keystrokes: F + d + Function | Lag Dial 2 d-F-2 X X X X Lag Dial 3 d-F-3 X X X X | | Reduce 0.1 Sec. Every | d | | 1.5 | | 0.0 | 0.0 | 1.5 | | | EV After RxR Delay 7 | Lag Dial 3 d-F-3 X X X PEDESTRIAN PHASES 1 2 3 4 5 6 7 | | Yellow Clearance | E | | 5.0 | | 3.0 | 3.0 | 5.0 | - | - | EV After RxR Clearance 8 | 2 Ped Load Switch d-F-4 | | Red Clearance | F | _ | 1.0 | - | 1.0 | 1.0 | 1.0 | - | - | EV After RxR Maximum 9 | 4 Ped Load Switch d-F-5 | | Red Rest Delay | ┯┸╾ | - | | | 1.0 | 1.0 | 1.0 | | | PREEMPTION PHASES Keystrokes: F + d + Function | 6 Ped Load Switch d-F-6 X 8 Ped Load Switch d-F-7 | | | F-0-7 | 0 | Remo | | | | | | | 1 2 3 4 5 6 7 | | | Green Rest Delay | F-0-8 | 0 | | N ARR | RDWIR | ED CC | NTIU | OUS | | EV- A 0 | North North 2 3 4 QLA | | Max Added Green | F-0-E | 25 | OLC: | φ6 | | | | | | EV- B 1 1 EV- C 2 | | | Red Revert | F-0-F | 2.0 | OLE : | ÷ 44 + 4 | 5 | | | | | EV- D 3 | 1 1 1 QUE : | | | 1, -0-1 | 2.0 | | | | | | | | RR Track Clear 4 | | | | | | | | | | | | | RR2 Ltd Service 5 RR1 Exit Phase 6 | | | | | | | | | | | | | | | LACO - 3H #### Hands-On Exercise – Data Entry #### Hands-On Exercise - Setup - » Project Information - » Time Tracking ### Hands-On Exercise Step 1. Background ### Hands-On Exercise Step 1. Background ### Hands-On Exercise Step 2. Build Links and Nodes Hands-On Exercises Step 3. Lane Settin Lanes and Sharing Traffic Volume (vo.) #### » User Inputs - Approach Name - Lanes and Sharing - Link Speed - Storage Length - Storage Lanes - RTOR | Lane Width (ft) 12 12 12 12 12 Grade (%) — 0 — 0 Area Type CBD — ✓ — ✓ Storage Length (ft) 145 — 80 0 — Storage Lanes (#) 1 — 1 — — Right Turn Channelized — — None — N Curb Radius (ft) — — — N Add Lanes (#) — — — — — Lane Utilization Factor 0.95 0.95 1.00 1.00 1.00 1 Right Turn Factor (prot) 0.950 0.983 1.000 — 0.976 1. Saturated Flow Rate (prot) 1513 1566 1425 — 1391 1 Left Ped Factor 1.000 1.000 1.000 — 1.000 1. Right Ped Bike Factor 1.000 1.000 1.000 — 1.000 1. Left Ped Factor 1.000 1.000 1.000 — <th>LANE SETTINGS</th> <th>₽
EBL</th> <th>—►
EBT</th> <th>EBR</th> <th>√
WBL</th> <th>←
WBT</th> <th>WBR</th> | LANE SETTINGS | ₽
EBL | —►
EBT | EBR | √
WBL | ←
WBT | WBR | |---|-----------------------------|-----------------|-----------|----------|-----------------|-----------------|--------------| | Future Volume (vph) 200 100 100 60 60 Street Name Line St. Line St. Line St. Link Distance (ft) — 220 — — 505 Link Speed (mph) — 25 — — 25 Set Arterial Name and Speed — EB — — WB Travel Time (s) — 6.0 — — 13.8 Ideal Satd. Flow (vphpl) 1900 1900 1900 1900 1900 1900 1 Lane Width (ft) 12 | Lanes and Sharing (#RL) | *5 | 4 | 7 | | 4 | 7 | | Street Name Line St. Line St. Link Distance (ft) — 220 — — 505 Link Speed (mph) — 25 — 25 Set Arterial Name and Speed — EB — — WB Travel Time (s) — 6.0 — — 13.8 Ideal Satd. Flow (vphpl) 1900 1900 1900 1900 1900 1 Lane Width (ft) 12 1 | Traffic Volume (vph) | 200 | 100 | 100 | 60 | 60 | 80 | | Link Distance (ft) — 220 — — 505 Link Speed (mph) — 25 — — 25 Set Arterial Name and Speed — EB — — WB Travel Time (s) — 6.0 — — 13.8 Ideal Satd. Flow (vphpl) 1900 1900 1900 1900 1900 1 Lane Width (ft) 12 | Future Volume (vph) | 200 | 100 | 100 | 60 | 60 | 80 | | Link Speed (mph) — 25 — 25 Set Arterial Name and Speed — EB — — WB Travel Time (s) — 6.0 — — 13.8 Ideal Satd. Flow (vphpl) 1900 1900 1900 1900 1 Lane Width (ft) 12 12 12 12 12 12 Grade (%) — — — — — — 0 — | Street Name | Line St. | | | Line St. | | | | Set Arterial Name and Speed — BB — WB Travel Time (s) — 6.0 — 13.8 Ideal Satd. Flow (vphpl) 1900 1900 1900 1900 1 Lane Width (ft) 12 12 12 12 12 12 Grade (%) — 0 — — 0 — — 0 — — 0 — — 0 — — 0 — — 0 — — — 0 — — — — — — — — — — — — — — — — — — — | Link Distance (ft) | | 220 | _ | _ | 505 | _ | | Travel Time (s) — 6.0 — — 13.8 Ideal Satd. Flow (vphpl) 1900 1900 1900 1900 1 Lane Width (ft) 12 12 12 12 12 Grade (%) — — — — 0 Area Type CBD — — — — — Storage Length (ft) 145 — 80 0 — Storage Lanes (#) 1 — 1 — — Right Turn Channelized — None — N Curb Radius (ft) — — — — N Curb Radius (ft) — — — — N Curb Radius (ft) — — — — — Add Lanes (#) — — — — — Lane Utilization Factor 1.000 1.000 0.850 — 1.000 1 Right Turn Factor (prot) 0.950 0.983 1.000 — 0.976 1 Saturated Flow | Link Speed (mph) | | 25 | _ | _ | 25 | _ | | Ideal Satd. Flow (vphpl) 1900 1900 1900 1900 1 Lane Width (ft) 12 12 12 12 12 Grade (%) — — — — 0 Area Type CBD — — — — — Storage Length (ft) 145 — 80 0 — Storage Lanes (#) 1 — 1 — — Right Turn Channelized — — None — N Curb Radius (ft) — — — N Add Lanes (#) — — — — N Lane Utilization Factor 0.95 0.95 1.00 1.00 1.00 1 Right Turn Factor 1.000 1.000 0.850 — 1.000 0 Left Turn Factor (prot) 0.950 0.983 1.000 — 0.976 1. Saturated Flow Rate (perm) 1.000 1.000 1.000 — 1.000 1. Left Ped Factor 1.000 1.000 1.000 | Set Arterial Name and Speed | _ | EB | _ | _ | WB | _ | | Lane Width (ft) 12 12 12 12 12 Grade (%) — 0 — — 0 Area Type CBD — ✓ — — Storage Length (ft) 145 — 80 0 — Storage Lanes (#) 1 — 1 — — Right Turn Channelized — — None — N Curb Radius (ft) — — — — N Curb Radius (ft) — — — — N Add Lanes (#) — — — — — Lane Utilization Factor 0.95 0.95 1.00 1.00 1.00 1 Right Turn Factor (prot) 0.950 0.983 1.000 — 0.976 1. Saturated Flow Rate (prot) 1513 1566 1425 — 1391 1 Left Ped Factor 1.000 1.000 1.000 — 1.000 1. Right Ped Bike Factor 1.000 1.000 1.000 — </td <td>Travel Time (s)</td> <td></td> <td>6.0</td> <td>_</td> <td>_</td> <td>13.8</td> <td>_</td> | Travel Time (s) | | 6.0 | _ | _ | 13.8 | _ | | Grade (%) — 0 — 0 Area Type CBD — ✓ — ✓ Storage Length (ft) 145 — 80 0 — Storage Lanes (#) 1 — 1 — — Right Turn Channelized — — None — N Curb Radius (ft) — — — — N Lane Utilization Factor 0.95 0.95 1.00 1.00 1.00 1.00 Right Turn Factor (prot) 0.950 0.983 1.000 — 0.976 1. Saturated Flow Rate (prot) 1513 1566 1425 — 1.000 1. Left Ped Factor 1.000 1.000 1.000 — 1.000 1.< | Ideal Satd. Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Area Type CBD — ✓ — ✓ Storage Length (ft) 145 — 80 0 — Storage Lanes (#) 1 — 1 — — Right Turn Channelized — — None — N Curb Radius (ft) — — — — N Curb Radius (ft) — — — — N Add Lanes (#) — — — — — Lane Utilization Factor 0.95 0.95 1.00 <td>Lane Width (ft)</td> <td>12</td> <td>12</td> <td>12</td> <td>12</td> <td>12</td> <td>12</td> | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | | Storage Length (ft) 145 — 80 0 — Storage Lanes (#) 1 — 1 — — Right Turn Channelized — — None — N Curb Radius (ft) — — — — — N Add Lanes (#) — — — — — — Lane Utilization Factor 0.95 0.95 1.00 1.00 1.00 1 Right Turn Factor (prot) 0.950 0.983 1.000 — 0.976 1. Saturated Flow Rate (prot) 1513 1566 1425 — 1.000 1. Left Turn Factor (perm) 0.950 0.983 1.000 — 0.976 1. Right Ped Bike Factor 1.000 1.000 1.000 — 1.000 1. Left Ped Factor 1.000 1.000 1.000 — 1.000 1. Saturated Flow Rate (perm) 1513 1566 1425 | Grade (%) | | 0 | _ | _ | 0 | _ | | Storage Lanes (#) 1 — — — None — N Right Turn Channelized — — — None — N Curb Radius (ft) — — — — — — Add Lanes (#) — — — — — — Lane Utilization Factor 0.95 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.850 — 1.000 0. 0.976 1. 1.00 1.00 0.976 1. 1.00 1.00 0.976 1. 1.00 | Area Type CBD | | ✓ | _ | _ | ✓ | _ | | Right Turn Channelized — — None — N Curb Radius (ft) — | Storage Length (ft) | 145 | | 80 | 0 | | 65 | | Curb Radius (ft) — | Storage Lanes (#) | 1 | _ | 1 | _ | _ | 1 | | Add Lanes (#) — — — — — Lane Utilization Factor 0.95 0.95 1.00 1.00 1.00 1 Right Turn Factor 1.000 1.000 0.850 — 1.000 0 Left Turn Factor (prot) 0.950 0.983 1.000 — 0.976 1 Saturated Flow Rate (prot) 1513 1566 1425 — 1391 1 Left Turn Factor (perm) 0.950 0.983 1.000 — 0.976 1 Right Ped Bike Factor 1.000 1.000 1.000 — 1.000 1 Left Ped Factor 1.000 1.000 1.000 — 1.000 1 Saturated Flow Rate (perm) 1513 1566 1425 — 1391 1 | Right Turn Channelized | _ | _ | None | _ | _ | None | | Lane Utilization Factor 0.95 0.95 1.00 1.00 1.00 1 Right Turn Factor 1.000 1.000 0.850 — 1.000 0 Left Turn Factor (prot) 0.950 0.983 1.000 — 0.976 1 Saturated Flow Rate (prot) 1513 1566 1425 — 1391 1 Left Turn Factor (perm) 0.950 0.983 1.000 — 0.976 1 Right Ped Bike Factor 1.000 1.000 1.000 — 1.000 1 Left Ped Factor 1.000 1.000 1.000 — 1.000 1 Saturated Flow Rate (perm) 1513 1566 1425 — 1391 1 | Curb Radius (ft) | _ | _ | _ | _ | _ | _ | | Right Turn Factor 1.000 1.000 0.850 — 1.000 0. Left Turn Factor (prot) 0.950 0.983 1.000 — 0.976 1. Saturated Flow Rate (prot) 1513 1566 1425 — 1391 1 Left Turn Factor (perm) 0.950 0.983 1.000 — 0.976 1. Right Ped Bike Factor 1.000 1.000 1.000 — 1.000 1. Left Ped Factor 1.000 1.000 1.000 — 1.000 1. Saturated Flow Rate (perm) 1513 1566 1425 — 1391 1 | Add Lanes (#) | _ | _ | _ | _ | _ | | | Left Turn Factor (prot) 0.950 0.983 1.000 — 0.976 1. Saturated Flow Rate (prot) 1513 1566 1425 — 1391 1 Left Turn Factor (perm) 0.950 0.983 1.000 — 0.976 1. Right Ped Bike Factor 1.000 1.000 1.000 — 1.000 1. Left Ped Factor 1.000 1.000 1.000 — 1.000 1. Saturated Flow Rate (perm) 1513 1566 1425 — 1391 1 | Lane Utilization Factor | 0.95 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | | Saturated Flow Rate (prot) 1513 1566 1425 — 1391 1 Left Turn Factor (perm) 0.950 0.983 1.000 — 0.976 1. Right Ped Bike Factor 1.000 1.000 1.000 — 1.000 1. Left Ped Factor 1.000 1.000 1.000 — 1.000 1. Saturated Flow Rate (perm) 1513 1566 1425 — 1391 1 | Right Turn Factor | 1.000 | 1.000 | 0.850 | _ | 1.000 | 0.850 | | Left Turn Factor (perm) 0.950 0.983 1.000 — 0.976 1. Right Ped Bike Factor 1.000 1.000 1.000 — 1.000 1. Left Ped Factor 1.000 1.000 1.000 — 1.000 1. Saturated Flow Rate (perm) 1513 1566 1425 — 1391 1 | Left Turn Factor (prot) | 0.950 | 0.983 | 1.000 | _ | 0.976 | 1.000 | | Right Ped Bike Factor 1.000 1.000 1.000 — 1.000 1. Left Ped Factor 1.000 1.000 1.000 — 1.000 1. Saturated Flow Rate (perm) 1513 1566 1425 — 1391 1 | Saturated Flow Rate (prot) | 1513 | 1566 | 1425 | _ | 1391 | 1425 | | Left Ped Factor 1.000 1.000 1.000 — 1.000 1. Saturated Flow Rate (perm) 1513 1566 1425 — 1391 1 | Left Turn Factor (perm) | 0.950 | 0.983 | 1.000 | _ | 0.976 | 1.000 | | Saturated Flow Rate (perm) 1513 1566 1425 — 1391 1 | Right Ped Bike Factor | 1.000 | 1.000 | 1.000 | _ | 1.000 | 1.000 | | | Left Ped Factor | 1.000 | 1.000 | 1.000 | _ | 1.000 | 1.000 | | Right Turn on Red? — — 🔽 — — 🗹 | Saturated Flow Rate (perm) | 1513 | 1566 | 1425 | _ | 1391 | 1425 | | | Right Turn on Red? | _ | _ | ✓ | _ | _ | \checkmark | | Saturated Flow Rate (RTOR) 0 0 100 — 0 | Saturated Flow Rate (RTOR) | 0 | 0 | 100 | _ | 0 | 80 | | Link Is Hidden — — — — | Link Is Hidden | _ | | _ | _ | | _ | | Hide Name in Node Title | Hide Name in Node Title | _ | | _ | _ | | _ | ### Hands-On Exercise Step 4. Volume Settings #### » User Inputs - Traffic Volume - Peak Hour Factor - Heavy Vehicle % - Adjacent Parking Lane - Parking Maneuvers | VOLUME SETTINGS | • | - | • | 1 | - | • | |-----------------------------|------|------------|------|----------|----------|------| | | EBL | EBT | EBR | WBL | WBT | WBR | | Lanes and Sharing (#RL) | ** | - 4 | 7 | | र्स | 7 | | Traffic Volume (vph) | 200 | 100 | 100 | 60 | 60 | 80 | | Development Volume (vph) | 0 | 0 | 0 | 0 | 0 | 0 | | Combined Volume (vph) | 200 | 100 | 100 | 60 | 60 | 80 | | Future Volume (vph) | 200 | 100 | 100 | 60 | 60 | 80 | | Conflicting Peds. (#/hr) | 0 | _ | 0 | 0 | _ | 0 | | Conflicting Bicycles (#/hr) | _ | _ | 0 | _ | _ | 0 | | Peak Hour Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Growth Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Adjusted Flow (vph) | 200 | 100 | 100 | 60 | 60 | 80 | | Heavy Vehicles (%) | 2 | 2 | 2 | 2 | 2 | 2 | | Bus Blockages (#/hr) | 0 | 0 | 0 | 0 | 0 | 0 | | Adj. Parking Lane? | | | | | ✓ | | | Parking Maneuvers (#/hr) | _ | _ | _ | _ | 10 | _ | | Traffic from mid-block (%) | _ | 5 | _ | _ | 100 | _ | | Link OD Volumes | _ | EB | _ | _ | _ | _ | | Traffic in shared lane (%) | 26 | _ | _ | _ | _ | _ | | Lane Group Flow (vph) | 148 | 152 | 100 | 0 | 120 | 80 | ### Hands-On Exercise Step 4. Volume Settings #### » Volume Transfer - Import/Export - Field data in Synchro format - Still need to set up other parameters # Hands-On Exercise Step 5. Intersection Control Settings #### » Node Inputs - Node # - Control Type - Cycle Length - Offset - Reference to - Reference Phase | NODE SETT | INGS | | | | | | |-----------------------|---------|--------------------------------|---|--|--|--| | Node # | | (3 | 3 | | | | | ATMS.now Controlle | er ID | | 0 | | | | | Import from ATMS.no | DW: | Import | | | | | | Export to ATMS, now | V. | Export | | | | | | Zone: | | | 0 | | | | | X East (ft): | | | 0 | | | | | Y North (ft): | | | 0 | | | | | Z Elevation (ft): | | | 0 | | | | | Description | | | | | | | | Control Type | | Actd-Coor | d | | | | | Cycle Length (s): | | 110.0 | 0 | | | | | Lock Timings: | | | | | | | | Optimize Cycle Leng | th: | Optimize | | | | | | Optimize Splits: | | Optimize | | | | | | Actuated Cycle(s): | | 110.0 | 0 | | | | | Natural Cycle(s): | | 90.0 | 0 | | | | | Max v/c Ratio: | | 0.63 | 3 | | | | | Intersection Delay (s |): | 29.9 | 9 | | | | | Intersection LOS: | | 110
90
0. | | | | | | ICU: | | 0.6 | 1 | | | | | ICU LOS: | | E | В | | | | | Offset (s): | | (| | | | | | Referenced to: | | Begin of Yello | | | | | | Reference Phase: | | Begin of Yello
2+6 - NBT SE | | | | | | Coordination Mode: | | Fixe | d | | | | | Master Intersection: | | 2+6 - NBT SE
Fixe | | | | | | Yield Point: | | 2+6 · NBT SE | | | | | | Mandatory Stop On ' | Yellow: | | | | | | # Hands-On Exercise Step 5. Intersection Control Settings #### » Timing Inputs - Turn Type - Protected/Permitted Phases - Detector Phases - Min Initial - Yellow - All-red - Lost Time Adjust - Lagging Phase - Recall Mode | TIMING SETTINGS | EBL | —►
EBT | EBR | √
WBL | ◀
WBT | WBR | |---------------------------|----------|-----------|--------------|-----------------|---------------------|------| | Lanes and Sharing (#RL) | ሻ | स | ~ <i>1</i> * | | 4 | 7 | | Traffic Volume (vph) | 200 | 100 | 100 | 60 | 60 | 80 | | Future Volume (vph) | 200 | 100 | 100 | 60 | 60 | 80 | | Turn Type | Split | _ | Perm | Split | _ | Perm | | Protected Phases | 4 | 4 | | 3 | 3 | | | Permitted Phases | | | 4 | | | 3 | | Permitted Flashing Yellow | _ | _ | _ | _ | _ | _ | | Detector Phases | 4 | 4 | None | 3 | 3 | None | | Switch Phase | 0 | 0 | 0 | 0 | 0 | 0 | | Leading Detector (ft) | 110 | 110 | 25 | _ | 110 | 25 | | Trailing Detector (ft) | 0 | 0 | 0 | _ | 0 | 0 | | Minimum Initial (s) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | Minimum Split (s) | 25.7 | 25.7 | 25.7 | 21.7 | 21.7 | 21.7 | | Total Split (s) | 26.0 | 26.0 | 26.0 | 22.0 | 22.0 | 22.0 | | Yellow Time (s) | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | | All-Red Time (s) | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | Lost Time Adjust (s) | -0.7 | -0.7 | -0.7 | _ | -0.7 | -0.7 | | Lagging Phase? | ∨ | <u> </u> | ✓ | | | | | Allow Lead/Lag Optimize? | | | | | | | | Recall Mode | None | None | None | None | None | None | | Speed limit (mph) | _ | 25 | _ | _ | 25 | _ | # Hands-On Exercise Step 5. Intersection Control Settings #### » Phasing Inputs - Vehicle Extension - Min Gap - Time Before Reduce - Time to Reduce - Pedestrian Phase - Walk Time - Flash Don't Walk - Pedestrian Calls - Dual Entry | PHASING SETTING: | 6 | 1-SBL | †
2-NBT | ☆
3-WBTL | ♣
4-EBTL | 5-NBL | ↓
6-SBT | |----------------------------|-----|-------|------------|-------------------------|--------------------|----------|------------| | Minimum Initial (s) | | 4.0 | 10.0 | 6.0 | 6.0 | 4.0 | 12.0 | | Minimum Split (s) | | 8.0 | 20.7 | 21.7 | 25.7 | 8.0 | 21.7 | | Maximum Split (s) | | 13.0 | 49.0 | 22.0 | 26.0 | 11.0 | 51.0 | | Yellow Time (s) | | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | | All-Red Time (s) | | 0.0 | 0.5 | 0.5 | 0.5 | 0.0 | 0.5 | | Lagging Phase? | | | V | | <u>~</u> | | ✓ | | Allow Lead/Lag Optimize? | | | | | | | | | Optimize Phs Weights - Del | ays | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | Vehicle Extension (s) | | 3.0 | 5.0 | 4.0 | 4.0 | 3.0 | 5.0 | | Minimum Gap (s) | | 2.0 | 2.5 | 2.5 | 2.5 | 2.0 | 3.0 | | Time Before Reduce (s) | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Time To Reduce (s) | | 0.0 | 20.0 | 20.0 | 20.0 | 0.0 | 20.0 | | Recall Mode | | None | C-Max | None | None | None | C-Max | | Pedestrian Phase | | | V | $\overline{\mathbf{v}}$ | <u> </u> | | ✓ | | Walk Time (s) | | _ | 7.0 | 7.0 | 7.0 | _ | 7.0 | | Flash Dont Walk (s) | | _ | 10.0 | 11.0 | 15.0 | _ | 11.0 | | Pedestrian Calls (#/hr) | | _ | 20 | 20 | 20 | _ | 20 | | Dual Entry? | | | V | | ▽ | | ✓ | | Fixed Force Off? | | V | <u>~</u> | ✓ | ~ | ✓ | ✓ | | 90th %ile Green Time (s) | | 10 mx | 45 cd | 18 mx | 22 mx | 8 mx | 47 cd | | 70th %ile Green Time (s) | | 10 mx | 45 cd | 18 gp | 22 pd | 8 mx | 47 cd | | 50th %ile Green Time (s) | | 9 gp | 54 cd | 16 gp | 17 gp | 10 gp | 53 cd | | 30th %ile Green Time (s) | | 7 gp | 61 cd | 13 gp | 14 gp | 8 gp | 60 cd | | 10th %ile Green Time (s) | | 0 sk | 79 cd | 10 gp | 11 gp | 0 sk | 79 cd | ### Hands-On Exercise Step . Simulation Settings - » User Inputs - Taper Length - Two-Way Left Turn Lane (TWLTL) - Visual only | SIMULATION SETTINGS | * | → | • | (| - | • | |-----------------------------|----------|----------|-------|----------|------|-------| | | EBL | EBT | EBR | WBL | WBT | WBR | | Lanes and Sharing (#RL) | ሻ | ર્ન | 7 | | र्स | 7 | | Traffic Volume (vph) | 200 | 100 | 100 | 60 | 60 | 80 | | Future Volume (vph) | 200 | 100 | 100 | 60 | 60 | 80 | | Storage Length (ft) | 145 | _ | 80 | 0 | _ | 65 | | Storage Lanes (#) | 1 | _ | 1 | _ | _ | 1 | | Taper Length (ft) | 25 | _ | 25 | _ | _ | 25 | | Lane Alignment | Left | Left | Right | Left | Left | Right | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | | Enter Blocked Intersection | No | No | No | No | No | No | | Median Width (ft) | _ | 12 | _ | _ | 12 | _ | | Link Offset (ft) | _ | 0 | _ | _ | 0 | _ | | Crosswalk Width (ft) | _ | 16 | _ | _ | 16 | _ | | TWLTL Median | _ | | _ | _ | | _ | | Headway Factor | 1.14 | 1.14 | 1.14 | 1.14 | 1.40 | 1.14 | | Turning Speed (mph) | 15 | _ | 9 | 15 | _ | 9 | | Mandatory Distance (ft) | _ | 458 | _ | _ | 458 | _ | | Positioning Distance (ft) | _ | 1101 | _ | _ | 1101 | _ | | Mandatory Distance 2 (ft) | _ | 734 | _ | _ | 734 | _ | | Positioning Distance 2 (ft) | _ | 1468 | _ | _ | 1468 | _ | ### Hands-On Exercise Step 6. Report #### » Measure of Effectiveness - Volume-to-Capacity ratio (v/c) - Delay - LOS - Queue Length - ... ### Hands-On Exercise Step 6. Report #### » Customize Results - Intersection level - Scenario level #### Huntington Area Transportation Study Preliminary Results | Future (2 | 040) Base Conditions Synchro Intersection Delay and Level o | f Service | | | Before Op | timization | | |------------------|---|--------------|-----------|-------------------------|-----------|-------------------------|-----| | C | | Intersection | on Volume | Al | М | PM | 1 | | Synchro
Node# | Intersection | АМ | PM | Int. Delay
(sec/veh) | LOS | Int. Delay
(sec/veh) | LOS | | 1 | Route 1 & Fort Hunt Road | 6150 | 6429 | 133.6 | F. | 177.4 | F. | | 3 | Route 1 & Shields Avenue | 4692 | 6263 | 49.7 | ο. | 259.6 | F. | | 4 | Route 1 at Walmart Entrance | 4593 | 5092 | 71 | E. | 112.2 | F. | | 5 | Telegraph Road & Huntington Avenue | 5219 | 6065 | 29.1 | С | 27.4 | С | | 6 | Telegraph Road & North Kings Highway | 4785 | 5905 | 27.9 | С | 93.6 | F. | | 7 | North Kings Highway & School Street | 2839 | 4242 | 30.1 | С | 160.9 | F. | | 9 | North Kings Highway/South Kings Highway & the Route 1 Connector | 2171 | 2521 | 167.8 | F. | 123.7 | F. | | 10 | Route 1& Beacon Hill Road | 5234 | 6084 | 153.8 | F. | 162.1 | F. | | 11 | Route 1& Sherwood Hall Lane | 4894 | 5458 | 38.9 | ο. | 66.4 | Ε. | | 12 | Telegraph Road & Franconia Road | 3768 | 5025 | 40.3 | ο. | 63.6 | Ε. | | 13 | Telegraph Road & South Kings Highway | 3459 | 3533 | 57.8 | E. | 39.7 | D. | | 14 | Telegraph Road & South Van Dorn Street | 3610 | 3862 | 82.9 | F. | 41.1 | D. | | 15 | Fort Hunt Road & Belle View Boulevard | 2961 | 4045 | 117 | F. | 137.8 | F. | | 16 | Fort Hunt Road & Sherwood Hall Lane | 2450 | 3052 | 92.5 | F. | 216.8 | F. | | 17 | Franconia Road & South Van Dorn Street | 9857 | 11349 | 328 | F. | 315.6 | F. | | 18 | George Washington Memorial Parkway & Belle View Boulevard | 3213 | 3372 | 30.3 | c. | 142.1 | F. | These intersections have at least one movement operating at failing LOSF #### 10. Route 1 & Beacon Hill Road 2013 Existing | ZOIJEXI | The state of | | | | |---------|--------------|----------|-------|-------| | Movem | ovem | Delay | | 95th | | ent | Volume | (seconds |) LOS | (ft) | | NBL | 74 | 74 114 | .2 F | m113 | | NBT | 2070 | 2070 9 | .7 A | 372 | | NBR | 669 | 669 7 | :1 A | 174 | | SBL | SBL 79 | 79 104 | .2 F | #181 | | SBT | SBT 931 | 931 26 | .9 C | 275 | | SBR | SBR 140 | 140 0 | .o A | 0 | | EBL | EBL 412 | 412 0 | .0 A | 0 | | EBT | EBT 88 | 8 1030 | .2 F | #1333 | | EBR | 345 | 345 454 | .4 F | #698 | | WBL | WBL 194 | 194 126 | .4 F | #423 | | WBT | WBT 118 | 118 165 | .3 F | #496 | | WBR | WBR 114 | 114 0 | .0 A | 0 | | Overall | verall | 153. | 8 F | | #### 11. Route 1 & Sherwood Hall Lane 2013 Existing | Movem | | Delay | | 95th | |---------|--------|-----------|-----|------| | ent | Volume | (seconds) | LOS | (ft) | | NBL | 63 | 94.1 | F | m105 | | NBT | 1942 | 17.8 | В | 401 | | NBR | 786 | 16.0 | В | 250 | | SBL | 164 | 147.2 | F | #375 | | SBT | 1251 | 24.0 | С | 337 | | SBR | 11 | 15.1 | В | m0 | | EBL | 25 | 85.3 | F | 68 | | EBT | 17 | 83.8 | F | 49 | | EBR | 59 | 82.2 | F | 0 | | WBL | 516 | 133.6 | F | #584 | | WBT | 16 | 136.6 | F | #596 | | WBR | 44 | 64.8 | Е | m7 | | Overall | | 38.9 | D | | ### Hands-On Exercise Step 6. Report #### » Customize Results Comparing scenarios | | | | | | | | 2040 No | Build AM | | | | |-----|---|--------|-------|--------|---------|---------|---------|----------|-------------|----------|-----------| | | | | | | | | | | tion C4 | | tion C5 | | ID | Intersection | Existi | ng AM | Un-mit | tigated | Mitigat | tion C2 | w/o GW | Sig FAR 2.0 | Hybrid O | ption FAR | | | | Delay | LOS | | 1 | Route 1 & Fort Hunt Road | 71.1 | E (3) | 134.6 | F (5) | 58.2 | E (4) | 60.0 | E (4) | 68.4 | E (3) | | 2 | Route 1 & Huntington Avenue | 27.3 | C (3) | 56.2 | E (3) | 37.6 | D (2) | 36.2 | D (2) | 33.9 | C (2) | | 3 | Route 1 & Shields Avenue | 16.3 | B (5) | 43.5 | D (6) | 26.3 | C (3) | 27.4 | C (3) | 26.7 | C (3) | | 4 | Route 1 & Walmart Entrance | 35.5 | D (2) | 82.1 | F (4) | 36.2 | D (2) | 37.0 | D (2) | 36.9 | D (2) | | 5 | Telegraph Road & Huntington Avenue | 15.1 | В | 29.0 | С | 28.5 | С | 29.8 | С | 29.0 | С | | 6 | Telegraph Road & North Kings Highway | 28.0 | С | 37.4 | D (1) | 31.0 | С | 30.9 | С | 30.9 | С | | 7 | North Kings Highway & School Street | 11.9 | В | 0.5 | Α | 4.7 | Α | 4.8 | Α | 4.8 | Α | | 8 | North Kings Highway (NB) & Shields Avenue | 23.6 | С | 23.0 | С | 32.4 | С | 33.0 | С | 32.6 | С | | 9 | North Kings Highway/South Kings Highway & the Route 1 Connector | 67.8 | E (1) | 125.1 | F (2) | 38.3 | D | 37.9 | D | 38.0 | D | | 10 | Route 1 & Beacon Hill Road | 20.4 | C (4) | 42.3 | D (5) | 35.2 | D (5) | 37.6 | D (5) | 37.3 | D (5) | | 11 | Route 1 & Sherwood Hall Lane | 31.1 | C (7) | 31.6 | C (7) | 32.1 | C (5) | 32.2 | C (5) | 32.2 | C (5) | | 12 | Telegraph Road & Franconia Road | 31.8 | С | 45.5 | D (1) | 37.4 | D | 37.9 | D | 36.8 | D | | 13 | Telegraph Road & South Kings Highway | 24.4 | С | 33.3 | С | 30.7 | С | 31.1 | С | 31.1 | С | | 14 | Telegraph Road & South Van Dorn Street | 23.4 | C (1) | 35.5 | D (1) | 36.8 | D (1) | 36.8 | D (1) | 36.2 | D (1) | | 15 | Fort Hunt Road & Belle View Boulevard | 34.2 | С | 71.5 | E (2) | 48.1 | D | 57.9 | E (3) | 60.4 | E (3) | | 16 | Fort Hunt Road & Sherwood Hall Lane | 63.0 | E (1) | 89.1 | F (1) | 41.9 | D | 43.0 | D | 45.1 | D | | 17 | Franconia Road & South Van Dorn Street | 121.9 | F (4) | 271.7 | F (6) | 178.2 | F (7) | 180.2 | F (7) | 179.8 | F (7) | | 18 | George Washington Memorial Parkway & Belle View Boulevard | 617.9 | F (1) | 550.5 | F (1) | 45.1 | D (1) | 550.0 | F (1) | 548.2 | F (1) | | 106 | North Kings Highway & Poag Street | - | - | 1.9 | А | 2.1 | Α | 2.1 | A | 2.1 | Α | | 712 | Route 1 & HOV Lanes | - | - | 22.1 | C (3) | 23.9 | C (3) | 24.7 | C (3) | 27.3 | C (3) | ### Training Session Overview - Traffic Analysis Basics - Synchro Introduction - Data Preparation - Synchro Operations - Hands-On Exercise - Advanced Applications #### 1. Signal Optimization - Step 1 - Single Intersection Timing Plans - » Base data entry - » Optimize Cycle and Splits per individual intersections - » Error checking #### 1. Signal Optimization – Step 2 - Partition Network - » Divide network into subsystems - Based on Coordinatability Factor - » Creates multiple zones for optimization - This part is optional #### 1. Signal Optimization – Step 3 - Optimize Network Cycle Length - » Set cycle length ranges - » By zone or network - » Level of Optimization - » Manual selection or Automatic #### 1. Signal Optimization - Step 4 - Optimize Offsets, Lead-Lag Phasing - » After system cycle lengths have been set - » By zone or network - » Level of Optimization #### 1. Signal Optimization – Performance Index Best cycle length found by calculating the Performance Index (PI) $$PI = \frac{D*1 + ST*10 + QP*100}{3600}$$ PI = Performance Index D = Percentile Signal Delay (s) QP = Queue Penalty (vehicles affected) ST = Vehicles Stops (vph) | Select Cycle Lengths | | | | | | |----------------------|------------------|---------------------|---------------------|--------------------|----------------| | Cycle
Length | Perform
Index | Queue
Delay (hr) | Total
Delay (hr) | Delay /
Veh (s) | Total
Stops | | 50 | 27 | 0 | 17 | 8 | 3553 | | 60 | 25 | 0 | 17 | 8 | 3208 | | 70 | 27 | 0 | 17 | 8 | 3370 | | 80 | 27 | 0 | 18 | 9 | 3243 | | 90 | 27 | 0 | 18 | 9 | 3023 | | 100 | 27 | 0 | 19 | 9 | 2946 | | 110 | 27 | 0 | 18 | 9 | 3237 | | 120 | 25 | 0 | 17 | 8 | 3208 | | 130 | 26 | 0 | 16 | 8 | 3287 | | 140 | 27 | 0 | 17 | 8 | 3370 | | 150 | 27 | 0 | 18 | 9 | 3298 | #### 1. Signal Optimization – Coordinatability Factor - CF is a measure of the desirability of coordinating intersections - Components - » CF1 = Initial Coordinatability factor from Travel Time - » CF2 = Initial Coordinatability factor from Volume per Distance - » Ap = Platoon Adjustment - » Av = Volume Adjustment - » Ac = Cycle Length Adjustment - CF scale from 0 to 100 - » > 80 Must be coordinated - > < 20 Too far apart (coordination not desirable)</p> - Intersection Splits - » Individual Intersection Optimizations - » Select intersection in question and optimize the following: - Intersection Splits - Intersection Cycle Length - Intersection Offset - Partition Network - » Network Zones - Manual Zones - Automatic Zones - Set partition level to desired sensitivity ### 1. Signal Optimization #### Optimize Offsets #### 2. Future Improvements & Mitigations - Volume Changes - Geometric Changes - » Street widening - » Exclusive turn lanes - » Road diet - Signal Optimization ## Advanced Applications 3. Roundabout #### Synchro - » HCM-based Method - "Trafficware states that SYNCHRO 10 implements the HCM 2010 and 6th Edition HCM roundabout methodologies. However, as is the case for any software described here, before using a new software version the analyst should verify the fidelity of the implementation by running some example problems where the results are known" - -- Multimodal Mobility Analysis Desk Reference from Caltrans Transportation Analysis Guide/Transportation Impact Studies Guide, June 2017 - » Analyzing Roundabout in Synchro #### **Advanced Applications** 3. Roundabout ## Advanced Applications 3. Roundabout - Recommended Software - » SIDRA Intersection - Deterministic tool - Account for the effects of vehicle arrivals based on adjacent traffic controls, whereas HCM does not - » VISSIM - Microsimulation package - Capable of analyzing full range of roadway ## **Training Summary** - Traffic Analysis Basics - Synchro Introduction - Hands-On Exercise - Advanced Applications #### Resources - Richard Ge - » rge@camsys.com - » (646) 364-5492 - Synchro User Manual/Online Help - Trafficware User Groups