CAMBRIDGE SYSTEMATICS

Synchro Training – Day 1 Caltrans On-Call Traffic Simulation Training

presented to Caltrans District 9

presented by

Cambridge Systematics, Inc. John Duesing and Richard Ge

June 5th, 2018

Introductions

- Cambridge Systematics Instructors
- Workshop Participants
- Workshop Format
- Attendee Expectations

Training Session Overview

- Traffic Analysis Basics
- Synchro Introduction
- Data Preparation
- Synchro Operations
- Hands-On Exercise
- Advanced Applications

Day 1/Part 1: Traffic Analysis Basics (9am –Noon)

- Review of Basic Traffic and Capacity Analysis
- Review of Traffic Analysis Tools
- Review of Analysis Tool Selection
- Review of FHWA and Caltrans Traffic Analysis Guidance

Day 1/Part 2: Basic Synchro Functions and Operations (1pm – 4pm)

- Data Collection Plan and Requirements
- Data Reduction and Calculating the peak hour factor
- Synchro Data Entry
- Signal Timings
- Synchro Performance Measures and how to read them

Day 2/ Part 3: Hands-on Exercise: Main Street Corridor Synchro Model (9am –Noon)

- Data Preparation
- Model Coding
- Extract and Report Existing Conditions

Day 2/Part 4: Advanced Synchro Applications (1pm – 4pm)

- Incorporating Future Year Forecasts
- Signal Timing optimization
- Geometric changes in lanes, turning bays, lane diets;

June 7 – Advanced applications, Review and Questions (9am-noon)

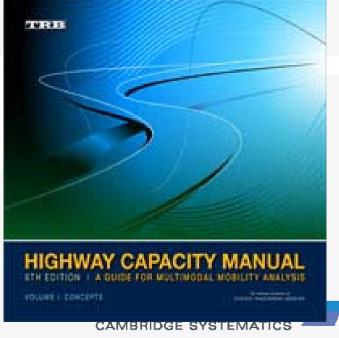
Richard will be available for the last day to review any procedures, software questions, or demonstrate analyzing other alternatives.

Project Background and Objectives

- Senate Bill (SB) 375 (Sustainable Community), SB 743 (CEQA Reform), and SB 391 (California Transportation Plan) require a more robust quantitative and analytic evaluation to describe the relative performance of transportation policies, strategies, and programs.
- SB 1, now in force; Caltrans will be collaborating with regional partners to identify and develop fixes for key corridors, which cannot be analyzed using static methods alone.
- On-call traffic simulation training will enable Caltrans to meet the mandate of these bills by educating Caltrans staff about how to perform complex analyses of our facilities for critical planning, operations, and capital improvement projects using the latest generation of traffic analysis tools.

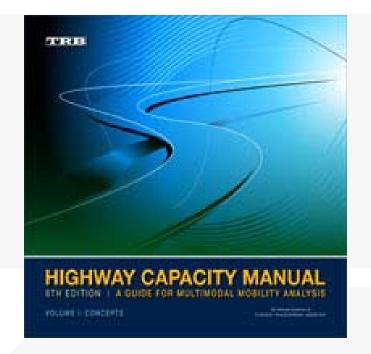
Training Session Overview

- Traffic Analysis Basics
 - » Overview of Traffic/Simulation
- Synchro Introduction
- Data Preparation
- Synchro Operations
- Hands-On Exercise
- Advanced Applications



What is Capacity ?

The capacity of a facility is the maximum hourly rate at which persons or vehicles reasonably can be expected to traverse a point or a uniform section of a lane or roadway during a given time period under prevailing roadway, traffic, and control conditions.


Vehicle capacity is the maximum number of vehicles that can pass a given point during a specified period under prevailing roadway, traffic, and control conditions. This assumes that there is no influence from downstream traffic operation, such as the backing up of traffic into the analysis point.

Quality and Level of Service

- Capacity is Measured in Quality of Flow and Level Of Service
 - » LOS is a measurement of quality
 - » In terms of flow, ability and freedom to maneuver
 - » Speed, travel time and interruptions
- 6 Levels of LOS A to F
- Many Factors effecting LOS
- Interrupted Flow Control Device aka Signalized Intersections.

Interrupted Flow MOE's

- Delay is preferred over speed in controlled intersection analysis;
- Control Delay computed by Saturation Rate and Lost Time

SATURATION FLOW RATE AND LOST TIME

Saturation flow rate is defined as the flow rate per lane at which vehicles can pass through a signalized intersection. By definition, it is computed by Equation 7-9:

$$s = \frac{3600}{h}$$
 (7-9)

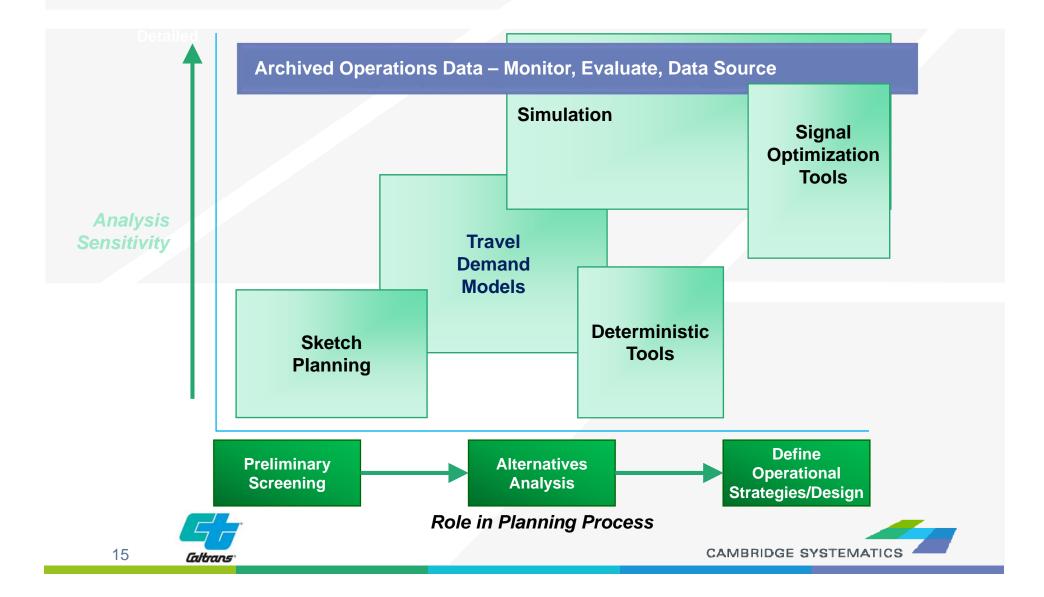
where

- s = saturation flow rate (veh/h), and
- h =saturation headway (s).

12

Interrupted Flow MOE's

- Saturation Flow Rate is the number of vehicles per lane per hour that could pass through the intersection if the signal was constantly green;
- Lost Time is whenever the signal stops traffic and interrupts the flow. Flow must then be started up again;
- Queuing is occurs when demand exceeds capacity;
- These are the main calculations that are going on inside HCM or Synchro to compute LOS and Queuing MOE's;


Type of Traffic Analysis Tool for Main Street

- Deterministic or Dynamic?
- Micro, Meso or Macro?
- Data availability?
- Model expertise and budget considerations?

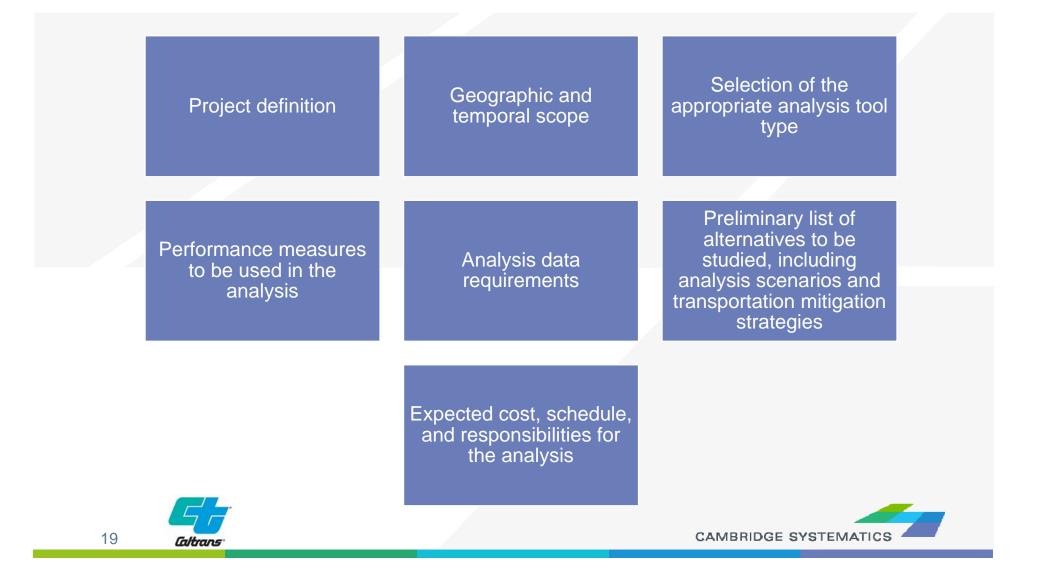
Analysis Tool Capabilities

Which Tool Type to Use – Leveraging Caltrans Selection Tool

🛃 Mic	rosoft Excel - Caltrans Automated Traffic	: Analysis	Tools v2													_	<u>a</u> >
획 Б	ile <u>E</u> dit <u>V</u> iew <u>I</u> nsert F <u>o</u> rmat <u>T</u> ools	<u>D</u> ata <u>W</u> i	ndow <u>H</u>	<u>t</u> elp									Туре	e a questio	n for help	-	8 ×
	2 🖬 🔁 🎒 🖪 🖤 🗼 🖻 🛍 • 🕤	🔊 🗠 -	CH + 4	Δ.	- <u>A</u> I ZI	🛍 🤣	75%	- 2	÷								
Arial	• 11 • B I <u>U</u>	≣ ≣ ≡	\$	%,	◆.0 .00 0.+ 00.	• = •		🕭 - ,	A								
G	€160 ~ f ∞																
A	E C	D	E	F	G	н	1	J	К	L	M	N	0	P	Q	B	-
31 Ci	riteria Weights																
32	5	6				7							8				
33 Co	ontext/Criteria (0 = not relevant, 5 = most				Weighte	d Subto	tals					Colum	ı 6 x Colu	umn 7			
34 rei	levant)	Criteria Relevance	Sketch Plan	TDM	Analytical (HCM)	Traffic Opt	Macro Sim	Meso Sim	Micro Sim	Sketch Plan	TDM	Analytical (HCM)	Traffic Opt	Macro Sim	Meso Sim	Micro Sim	
5 0	Analysis Context	1	50	50	25	Ô	25	25	0	50	50	25	Ō	25	25	0	
86 1	Geographic Scope	5	38	25	25	0	25	25	25	188	125	125	0	125	125	125	
7 2	Facility Type	5	19	42	36	31	44	44	50	97	208	181	153	222	222	250	
8 3	Travel Mode	1	22	30	22	22	22	29	29	22	30	22	22	22	29	29	
9 4	Management Strategy/Applications	5	14	4	13	10	20	20	25	72	20	65	50	98	98	123	
0 5	Traveler Response	5	-5	15	-248	-33	-16	0	18	-24	75	-1238	-165	-82	1	88	
16	Performance Measures	5	13	16	19	18	20	25	26	63	80	93	89	100	126	132	-
2 7	Tool/Cost Effectiveness		28	16	32	26	26	20	21 FOTALS	28 495	16 604	32 -695	26 175	26 537	20 646	21 768	
3 4					Mo	ost Appre	opriate T			1.	Micro Si		113	991	040	100	
5										2.	Meso Si	m					
6																	
7	Tool Categories:																
8	Sketch Plan = Sketch-planning methodolog	eies and tor	le le							- D -							
	TDM = Travel demand models	gies and tot								- Ke	calcu	late –					
9			101/1														
0	Analytical (HCM) = Analytical/determini	istic tools (f	-ICM-base	ed)													
1	Traffic Opt = Traffic optimization tools																
2	Macro Sim = Macroscopic simulation mod	dels										as the most				ategory	
3	 Meso Sim = Mesoscopic simulation model 	ls										ns of facility t		ormance m	easures,		
4	Micro Sim = Microscopic simulation mode	els					geograp	nic scor	be, and m	anagemer	nt strategy	//applications	•				
5	Please see the 'Tool Definitions' worksheet for m	nore details					Mesosc	opic sim	ulation mo	odels wer	e selected	as the seco	nd most a	ppropriate	traffic an	alysis	
6							category	y becaus	se of the	project's r	equiremer	nts in terms o	f facility t	ype, perfo	rmance m	easures,	
7							geograp	hic scop	be, and m	anagemer	nt strategy	//applications					
8																	
9																	
0						1											
:1																	
2																	
3																	
4																	
5																	
6																	
4	🕨 🕅 🕇 Tool Category 🖉 Help 🧹 Criteria Defin	nitions 🖌	Tool Cate	gory Def	initions / S	heet1 /			•								١I
eady																	
	art 🛛 💋 🥔 🗐 🖳 🛞 Ď 🗍 🥮 Vas	ssili Al 🛛 🛱	Microsin	n 🍇	Microsof	🔍 Calt	rans	Mic	roso	🔍 Augus	t P	ଡ଼≶ଡ଼ୣୣୣ	• N 🛞	Mā 🖉 🤣	∑ ⊛ ຼ	j 11:32	: AM
													~	1			
16	Caltrans"										C	AMBRI	NGE 9	VOTE	MATI/	יפ 💻	

Analysis Context: Planning, Design, or Operations/Construction

1	2	3	4	5	6	7
Geographic	Facility	Travel Mode	Management	Traveler	Performance	Traveler
Scope	Type		Strategy	Response	Measures	Response
What is your study area?	Which facility	Which travel	Which mgmt	Which traveler	What	What
	types do you	modes do you	strategies	responses	performance	operational
	want to	want to	should be	should be	measures are	characteristics
	include?	include?	analyzed?	analyzed?	needed?	are important?
 Isolated Location Segment Corridor/ small network Region 	 Isolated intersection Roundabout Arterial Highway Freeway HOV lane HOV bypass lane Ramp Auxiliary lane Reversible lane Truck lane Bus lane Toll plaza Light rail 	 SOV HOV (2, 3, 3+) Bus Rail Truck Motorcycle Bicycle Pedestrian 	 Freeway mgmt Arterial intersections Arterial mgmt Incident mgmt Emergency mgmt Work zone Special event APTS ATIS Electronic payment RRX CVO AVCSS Weather mgmt TDM 	 Route diversion (pre-trip and en-route) Mode shift Departure time choice Destination change Included/ foregone demand 	 LOS Speed Travel time Volume Travel distance Ridership AVO v/c ratio Density VMT/PMT VJJT/PHT Delay Queue length # stops Crashes/durati on TT reliability Emissions/fuel Noise Mode shift Benefit/cost 	 Tool capital cost Effort (cost/training) Ease of use Popular/well- trusted Hardware requirements Data requirements Run time Post- processing Documentation User support Key parameters user definable Default values Integration Animation


Data and Resources - Leveraging Caltrans Non-IT Microsimulation TAC

CAMBRIDGE SYSTEMATICS Microsimulation Scoping Template	Microsimulation Solicitat	
technical report	technical	rt
prepared for California Department of Transportation prepared by Cambridge Systematics, Inc.	prepared for California Department of Transport prepared by Cambridge Systematics, Inc.	tation

Components of a Scoping Plan

Project Scoping Summary Elements

Project Definition	A concise statement of the overall system problem includes cross- validation and other insights from stakeholders on the nature of the issue and potential solutions.
Geographic Scope	The geographic area to be covered by the analytical project includes a statement of the required detail of representation within this geographical area.
Temporal Scope	The times of day, days of week, seasonality, and years of operation are assessed in the analytical effort. This includes an assessment of the simulation horizon.
Candidate Hypothesis	The candidate hypothesis represents the leading underlying cause of the system performance issue.
Analytical Approach	This element describes of the proposed method for evaluating the effectiveness of the mitigating strategies in resolving the system performance issue.
Selected Tool Type(s)	The one or more tool types will be used in the analytical approach. This section should identify if existing models are to be employed, or if new models must be developed.
Data Requirements	A summary of data will be used to characterize operational conditions, represent alternatives, and model the geographic and temporal aspects of the system.
57	

20

Caltrans

CAMBRIDGE SYSTEMATICS

Project Scoping Summary Elements (Cont'd)

Preliminary List of Alternatives	High-level description of the alternative solutions and/or operational practices will be assessed within the analytical project.
Key Operational Conditions	The set of travel demand, incident, and weather conditions under which a meaningful examination of alternative impacts must be conducted.
Selected Performance Measures	The measures of system performance selected for the effort. These measures should be most suited to differentiate alternatives, be meaningful to stakeholders, and can be well-represented/estimated within the proposed analytical approach.
Expected Costs	The projected cost of the analytical project, including data collection.
Expected Schedule	The projected time to conduct the analysis, including data collection.
Expected Assignment of Responsibilities	An assessment of responsibilities related to the project and how those responsibilities are allocated among departments, contractors, and other organizations engaged in the effort.
Risks	A summary of risks comprising risks in data collection, technical risks, and non-technical risks.

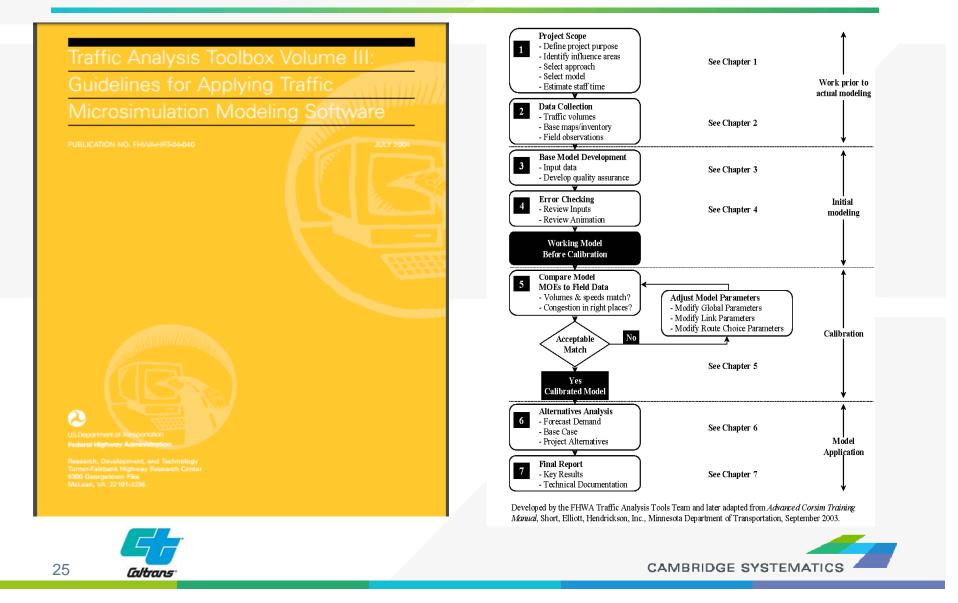
21

Analysis Scoping Tool Summary of Example User Inputs

	Transportation Analysis Project C				
	Press This Button to St	art			
	Summary of User Inputs:				
1	Name of Study Area:	Standard TIS			
2	Number of Intersections:	5			
3	Number of Freeway Ramps:	10			
4	Base Model Availability:	Yes			
5	Is the Base Model Calibrated:	Yes			
6	Number of Analysis Horizons:	2			
7	Number of Alternatives:	2			
8	Number of Representative Days:	2			
9	Number of Peak Periods	2			
10	Data Processing Requirements:	Low			
11	Complexity of Analysis Scenarios:	Simple			
12	Complexity of Methodology:	Deterministic			
	Complexity of Outputs:	Comprehensive			
14	Analyst Experience:	Considerable			

Analysis Costing Tool Example Output

	Transportation Analysis Project Costing Tool						
OUT	PUT REPORT						
Estin	nate of Labor Hours Required to Complete the Analysis of:						
	Standard TIS						
			Engineer/				
		Manager	Planner	Technician	Total	Lower	Upper
	Project Task	Hours	Hours	Hours	Hours	Bound	Bound
1	Develop workplan, analysis plan, and project management	30	30	10	70	60	8
2	Select analysis tool	10	10	-	20	20	2
3	Develop data plan and process data	-	-	40	40	40	4
	Define clusters and representative days	30	50	-	80	70	9(
5	Develop and calibrate baseline model(s)	20	40	70	130	120	17(
6	Develop future baseline model(s)	30	30	30	90	80	10
7	Analyze alternatives	90	180	90	360	320	40
8	Reports and presentations	30	30	10	70	60	8
	Total Labor Hours	240	370	250	860	770	980


Training Session Overview

- Traffic Analysis Basics
 - » Traffic Analysis Output
- Synchro Introduction
- Data Preparation
- Synchro Operations
- Hands-On Exercise
- Advanced Applications

Model Calibration Requirements Leveraging FHWA Microsimulation Guidance

Project Results Summary Elements

Project Definition	A concise statement of the overall system problem including cross- validation and other insights from stakeholders on the nature of the issue and potential solutions.
Geographic Scope	The geographic area covered by the analytical project, including a statement of the required detail of representation within this geographical area.
Temporal Scope	The times of day, days of week, seasonality, and years of operation assessed in the analytical effort. This includes an assessment of the simulation horizon.
Hypotheses	The hypotheses represents the leading underlying cause of the system performance issue.
Results Summary	A text description summarizing the analytical results of the effort. This section should reference the final report that details project findings.
Analytical Approach	A description of the method used for evaluating the effectiveness of the mitigating strategies in resolving the system performance issue.
Developed Models	The one or more tool types used in the analytical approach, and the models developed to represent the system. This section should identify where these data are archived and documented.
Data Resources	A summary of data used to characterize operational conditions, represent alternatives, and model the geographic and temporal aspects of the system. This section should identify where these data are archived and documented.
26 Caltrans	CAMBRIDGE SYSTEMATICS

Project Results Summary Elements (Cont'd)

Alternatives Modeled	Detailed description of the alternative solutions and/or operational practices assessed within the analytical project.
Key Operational	The set of travel demand, incident, and weather conditions under which a
Conditions	meaningful examination of alternative impacts were conducted.
Selected	
Performance	The measures of system performance used in the effort.
Measures	
Actual and	The actual and projected cost of the analytical project, including
Expected Costs	data collection.
Actual and Expected Schedule	The actual and projected time to conduct the analysis, including data collection.
Lessons Learned	An assessment of lessons learned regarding technical and non- technical issues.
Risks	A summary of risks comprising risks in data collection, technical risks, and non-technical risks—and how they were overcome or mitigated in the effort.

Analysis Tool Selection – HCS/Synchro

Incorporation of HCM into Synchro 10

- » HCM 2000
- » HCM 2010
- » HCM 6th Edition

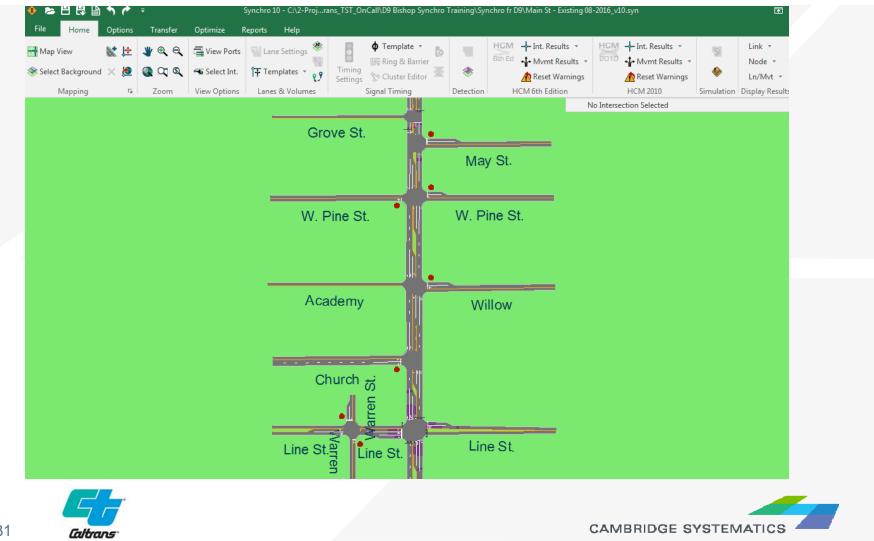
Caltrans Guidelines

- » "Multimodal Mobility Analysis Desk Reference" from Caltrans Transportation Analysis Guide/Transportation Impact Studies Guide, June 2017
- » "Guide for the Preparation of Traffic Impact Analysis", December 2002
- » Synchro for Signalized Intersection Analysis

Training Session Overview

- Traffic Analysis Basics
- Synchro Introduction
- Data Preparation
- Synchro Operations
- Hands-On Exercise
- Advanced Applications

Synchro Introduction


What is Synchro

- » Traffic analysis tool
 - Macroscopic
 - Deterministic
- » Used for
 - Capacity Analysis
 - Signal Coordination & Optimization
 - Actuated Signals
- » Primarily a signal-timing software

Synchro Introduction

31

Synchro Introduction - What is Synchro

- Capacity Analysis
 - » HCM
 - HCM 2000, HCM 2010 and HCM 6
 - Delay-based
 - Urban Streets
 - Signalized and Unsignalized Intersections
 - » ICU
 - Intersection Capacity Utilization
 - Volume-to-capacity (v/c) ration-based
 - Percentile Delay
 - Queue Blocking Delays

TIMING SETTINGS	EBL	→ EBT	EBR
Lanes and Sharing (#RL)		4	
Traffic Volume (vph)	60	5	60
Future Volume (vph)	60	5	60
Turn Type	Perm	_	—
Protected Phases		4	—
Permitted Phases	4		—
Permitted Flashing Yellow	_	_	—
Detector Phases	4	4	—
Switch Phase	0	0	—
Leading Detector (ft)	_	25	—
Trailing Detector (ft)	—	0	_
Minimum Initial (s)	6.0	6.0	—
Minimum Split (s)	24.7	24.7	_
Total Split (s)	35.0	35.0	—
Yellow Time (s)	3.2	3.2	—
All-Red Time (s)	0.5	0.5	_
Lost Time Adjust (s)	—	-0.7	-0.7
Lagging Phase?	—	—	_
Allow Lead/Lag Optimize?	—	_	—
Recall Mode	None	None	—
Speed limit (mph)	_	25	—
Actuated Effct. Green (s)		19.2	_
Actuated g/C Ratio	_	0.16	_
Volume to Capacity Ratio		0.47	—
Control Delay (s)	_	35.2	—

Synchro Introduction - What is Synchro

Coordination Software
 Offsets
 Controller Information
 Optimization Methods
 Intersection Cycle, Splits

» Network Coordination

Actd-Coord
118.0
Optimize
Optimize
118.0
55.0
0.59
13.5
В
0.55
В
68.0
Begin of Yellow
2+6 - NBT SBT
Fixed

Synchro Introduction - What is Synchro

Actuated Signal Software	PHASING SETTINGS	1-SBL	↑ 2-NBT	
	Minimum Initial (s)	4.0	8.0	
» Minimum/Maximum Cycle Length	Minimum Split (s)	8.0	20.7	
	Maximum Split (s)	23.0	60.0	
Information	Yellow Time (s)	3.2	3.2	
Information	All-Red Time (s)	0.0	0.5	
	Lagging Phase?			
» Recall Mode	Allow Lead/Lag Optimize?			
	Optimize Phs Weights - Delays	1.0	1.0	
» Vehicle Extension & Gap	Vehicle Extension (s)	3.0	6.7	
venicie Extension & Oap	Minimum Gap (s)	2.0	2.0	
n Leon Detector laferra d'en	Time Before Reduce (s)	0.0	5.3	
» Loop Detector Information	Time To Reduce (s)	0.0	37.6	
•	Recall Mode	None	C-Max	
	Pedestrian Phase			
	Walk Time (s)	—	7.0	
	Flash Dont Walk (s)	—	10.0	
	Pedestrian Calls (#/hr)	_	30	
	Dual Entry?		✓	

 \checkmark

 \checkmark

Fixed Force Off?

34

Training Session Overview

- Traffic Analysis Basics
- Synchro Introduction
- Data Preparation
- Synchro Operations
- Hands-On Exercise
- Advanced Applications

Data Preparation

- Geometry Information
 - » Needs
 - Approach Lane Configuration
 - Turn Bay Length
 - Arterial Lane Configuration
 - Intersection Locations to Scale
 - Link Speed
 - **.**...
 - » Sources
 - Aerial imagery
 - In-field verification

Data Preparation

Traffic Counts

- » Vehicular turning movement counts
 - During peak hour in 15-min intervals on weekdays
 - By vehicle class
 - 2 year or newer counts recommended
- » Pedestrian counts if applicable
- » Bus information if applicable

Data Preparation – Collecting Turning Movement Counts

Sample Data Collection Sheet Study Name Mannheim & IL 19 AM Start Date 05/02/2018 Start Time 7:00 AM Southbound St. Westbound St. Northbound St. Eastbound St. Southbound Westbound Northbound Eastbound Start Time Left Thru Right Left Thru Right Left Thru Right Left Thru Right 7:00 AM 7:15 AM 7:30 AM 7.45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM $(\mathbf{+})$ Lights Mediums Articulated Trucks Totals - b-

Data Preparation – Processing Turning Movement Counts

- Sample Data Calculation Sheet
 - » Identifying Peak Hour
 - » Heavy Vehicle %
 - » Peak Hour Factor (PHF): busies 15-min period

Stud	ly Name	Mannhei	m & IL 19	AM												
Sta	art Date	05/02/20	18													
Sta	art Time	7:00 AM														
		outhbound S Southbound			estbound S Nestbound	-		orthbound S Northbound	t.		astbound St Eastbound			Hourly	Heavy	
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	All Mvnts	Volume	Veh %	PHF
7:00 AM	32	261	131	129	187	33	20	265	132	135	190	14	1529	6637		
7:15 AM	22	272	113	143	163	16	16	365	188	161	160	14	1633	6646	0.09	0.94
7:30 AM	28	253	121	120	235	29	22	350	153	191	193	21	1716	6523		
7:45 AM	37	312	123	131	190	21	14	429	145	180	158	19	1759	6391		
8:00 AM	21	220	96	127	193	36	14	351	131	201	133	15	1538	6060		
8:15 AM	26	230	115	104	173	30	18	370	143	170	118	13	1510			
8:30 AM	23	230	90	138	165	18	13	383	150	211	147	16	1584			
8:45 AM	16	226	96	104	166	34	21	344	132	143	128	18	1428			
Max Hourly														6646		
AM Peak Hour	108	1057	453	521	781	102	66	1495	617	733	644	69				

39

Data Preparation – Volume Balancing

Volume Balancing

- » Imbalances because:
 - Peak hour selection method: selecting peak hours for individual intersections vs. universal peak hour for all intersection
 - Existence of driveways and parking lots along the corridor
 - Variations in traffic counts collected at different days/weeks/months and/or from different sources
- » Threshold for volume balancing
 - 10% of the total approach traffic volumes

Data Preparation – Volume Balancing

Sample Volume Balancing Sheet

ock Island		L				L			_	_	_					2	Turtle	Run Bl					_					_		L			
	SB									WB										SB									WB				
7am	159	411	264	0		1				7am	n 8am								7am	113	0	127	7 0						7am	8am			
8am	83	199	130	0					R	1	49 5	9							8am	67	0	91	1 0)				R	36	18	8		
		Т		U					Т		96 83									R		L						т	907				
	1		1	-					L		21 25	8										İ						1	C	1			
										_	0																_	U		0	1		
			<u> </u>	7am	58				0		0	0			19	6 4%							7am	0				0			,		
7am	82m			8am	21			720	n 8am	_	_		7.2m	8am	7am	8am			7am	8.2m			8am	0			70m	8am	<u> </u>			7am	8.2m
	_			odiii							_		<u> </u>							_			odiii	0	-								
	1163								48	6	_	\leq		6 1156	1	5 <mark>4</mark> 2	-	\leq		. 1114								0 0	(\leq	943	
892	2 433	<u> </u>				<u> </u>			_	_	_	_	1114	4 1162					240	158			_							<u> </u>		943	102
									_	_	_	_	_																				
7am 8am			7am	22					_				8am		-9	7 -140		7am				7am	7	'							7am		
1199 1035			8am	2				0 7an	1			157	4 132	1	7am	8am		1477	1181	\mathcal{V}		8am	0				0 7am				1573	1200	/
1221 1037								1 8an	1				4 93		-79	6 -12%		1484									0 8am				58		
	7am	8am				(¹														7am	8am								1				
		40	L									1								40		L	· · · ·						1	1			
		772		<u> </u>	<u> </u>				_	1	Т	R	U								1088		<u> </u>	<u> </u>					1	т	R	U	
		223			<u> </u>				7am		15 54			0						1425							_	7am	31		21	-	
	0						ped	_			41 27			0						0						ped		8am	-		21		
			U						odiii	2	<mark>41</mark> 27	_	9	0						0		0		7				odili	57			0	
		EB				7am	128		_	_	_	NB									EB	_		7a		7		_			NB		
						8am	30																	88	m	0							
ock Island																2	urtle Ru	ın Blvd															
	SB						1			WB									S	в									WB				
	143.1	369.9	237.6	0							8am							7a		108	0	122	0						7am	8am			
	104.6								R	208.								8a		94		128						R	54				-
oann	R			U			_ 	_	T	074	4 1107							00	R		_		U				_	т					-
		r i	<u> </u>	0				-	L	309.								_		· · ·	-	L.	0				_	1	1301				-
										_	_				_												_	-	_				-
	1 1			-					U	-	0 0								_				-				_	U	0	0		\vdash	
			_	7am	58			_	-				_		0%			-	-				7am	0			-						•
7am				8am	21		<u> </u>		8am				7am		7am			-	im 8				8am	0				8am				7am	
	1516						<u> </u>	4	86	5				1526	-6.34	-4.42			499								C) ()			\leq	1415	
000 0	540.1												1540	1532				23	30.4	222.8												1415	141
808.6	_																																
808.6			7am	22			1					7am	8am		1.32	0.75	7a	m 8a	m			7am	7								7am	8am	
7am 8am			7am							-		4 4 4 7	1664		7am	8am	1	418 1	.665			8am	0				0 7am				1510	1692	
7am 8am			7am 8am	2				0 7am				141/	1004					425 1									0 8am					86.01	
7am 8am 1079 1304										-					0%	0%												<u> </u>					
7am 8am 1079 1304 1101 1306	5							0 7am 1 8am				1417			0%	0%	1		7	am 🦻	am								1	•			
7am 8am 1079 1304 1101 1306	5 7am	8am_	8am												0%	0%	1		7	am 8		1			_		_			1			-
7am 8am 1079 1304 1101 1306	5 7am 152.1	8am 50	8am L								т	1075	1178		0%	0%				38	116						_			т	D		
7am 8am 1079 1304 1101 1306	7am 152.1 785.7	8am 50 972.7	8am L T							-		1075 R	1178 U		0%	0%				38 1368	116 1534	т						7				U	
7am 8am 1079 1304 1101 1306	7am 152.1 785.7 141.3	8am 50 972.7 281	8am L T R						7am	193.	5 487.8	1075 R 393.3	1178 U 0		0%	0%				38 1368 12	116 1534 16	T R						7am	30	6	20	0	
7am 8am 1079 1304 1101 1306	7am 152.1 785.7 141.3 0	8am 50 972.7	8am L T R							193.	5 487.8 7 345.2	1075 R 393.3	1178 U		0%	0%				38 1368	116 1534 16 0	T R						7am 8am		6 4	20	0	

Data Preparation

Signal Information

» Timing

» Phasing» Coordina

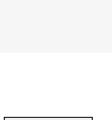
DEPARTMENT OF PUE TRAFFIC AND LIGHTIN TRAFFIC SIGNAL TIMI Intersection: T.S. No.:	IG DIVI	SION		VA	LLEX TR	BL (0 1 5 0 AT	ZUI THEN 2 WC	3 AC	LACO - 3			Date Requested: /- ?- Date Completed: 군-/	13 H	<u>'cH</u>		By By	age /: <u>D</u>	
PHASE TIMING			Key	strokes					66	PREEMPTION			PHASE FUNC					-7	2
Phase #		1	2	3	4	5	6	7	8	Keystrokes: F + E + Fu	nction	-	Keystrokes: F	+ F + F	uncti	lon			_
Minimum Walk		0	0		6	0	7			RxR Select (0, 1, 2, 3)		0	Phases Permitted			2 3	_	_	_
Flashing Don't Walk										RxR Track Clearance		1	Red Lock	0	;	_	x > x	< x	4
		1	0		0	0	14			RxR1 All Red RxR2 Maximum (Minutes)		2	Red & Yellow Lock	2	┝ +,		<u></u>	×	1
Minimum Green		2	10		7	8	10			RxR2 Maximum (Minutes) Free Time After Preempt		3	Minimum Vehicle Recall	3		x	+	x	
Queue Maximum		3	0	†	0	0	0		-	EV - A Delay		5	Pedestrian Recall + Rest in Wall			++	-	+	1
					0	0	0		-	EV - A Clearance		6	Green Rest (Set Delay F-0-8)	5			_	1	~
Added Green/Actuation		4	2.2		0.0	0.0	2.2			EV - B Delay		7	Red Rest (Set Delay F-0-7)	6					
Vehicle Extension		5	4.5		3.5	2.5	4.5		1	EV - B Clearance		8	Semi Traffic Actuated Mode Double Entry	7			_	+	
Maximum Gap		-						<u> </u>	-	EV - C Delay		9	Maximum Vehicle Recall	8					_
maximum Gap		6	5,5		3.5	2.5	5.5			EV - C Clearance		Α	Restricted Phases		\vdash	+	+		
Minimum Gap		7	3.0		3.5	2.5	3.0			EV - D Delay EV - D Clearance		b	Protected/Permissive Left Turn	-6	+	++	+	+	-
Max Extension 1 (Free)		8	50							EV Maximum (Seconds)		C	Barrier Recall	c		++	+	+	1
		°	50		35	20	50			EV Delay/Clearance Timer		E	First Phases After Start Up	d		++	+	+	1
Max Extension 2 (Coord)		9	130		35	20	130			RxR Delay/Clear/Mark Timer		늵	Yellow Start Up	E	>		T	X	
	I HASSE	OVL			OVLP					EV AFTER RxR PREEM	PTION	-	Overlap Yellow Start Up:			b C	dE	ž F	
Ovip Green Extension		A	В	c	D	E	F			EV Type Select	F-C-0		(Parents must be Yellow Start Up	0) F	X	x			
Svip Green Extension		<u>م</u> *		3.0		0.0				Select : EV - A Enter 16			LAG PHASE FLAGS		1 2	_		56	
Ovip Yellow Clearance		*		5.0		3.0				EV - B Enter 32			Lag Free	d-F-0	>		х	X	_
Ovip Red Clearance		c *	-	1.0						EV - C Enter 64 EV - D Enter 128			Lag Dial 1	d-F-1	>		×	×	
		-		1.0		1.0				Keystrokes: F + d + Fur			Lag Dial 2 Lag Dial 3	d-F-2	>		x x	X	_
Reduce 0.1 Sec. Every		d I	1.5		0.0	0.0	1.5			EV After RxR Delay	_	7	PEDESTRIAN PHASES	d-F-3	_	2 3	_		
Yellow Clearance			5.0		3.0	3.0	5.0	· .		EV After RxR Clearance		8	2 Ped Load Switch	d-F-4	+	+++	+	+	1
					0.0	3.0	5.0			EV After RxR Maximum		9	4 Ped Load Switch	d-F-5		++	+	+	1
Red Clearance	1	-	1.0		1.0	1.0	1.0			PREEMPTION PHAS	ES	-	6 Ped Load Switch	d-F-6			-	x	1
Red Rest Delay	F-0-	7 0	Remo	rks:					L	Keystrokes: F + d + Fur			8 Ped Load Switch	d-F-7					
Green Rest Delay	F-0-	8 0	*0L/	A - HAR	DWIR	ED CO	NTIU	ous		EV-A 0	4 5 6	7 8	True Phase 1	2 :	3	3			
		° °	GREE	N ARR	OW.					EV-B 1		+	North North		4			*QLA	7
Max Added Green	F-0-	E 25	OLC	= ¢6 = ¢4 + ¢	5					EV-C 2		+-1						f	
Red Revert	F-0-	F 2.0		- 04 + 0						EV- D 3		+-		6 :			-+	ÒLE	ŝ
]							RR Track Clear 4					7			8	
										RR2 Ltd Service 5		T	-1" -1" []	0	DLC				

Training Session Overview

- Traffic Analysis Basics
- Synchro Introduction
- Data Preparation
- Synchro Operations
- Hands-On Exercise
- Advanced Applications

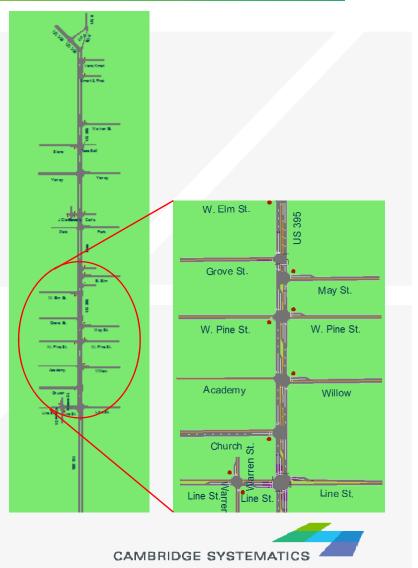
Synchro Operations – Navigation & Editor

🖐 🔍 🔍

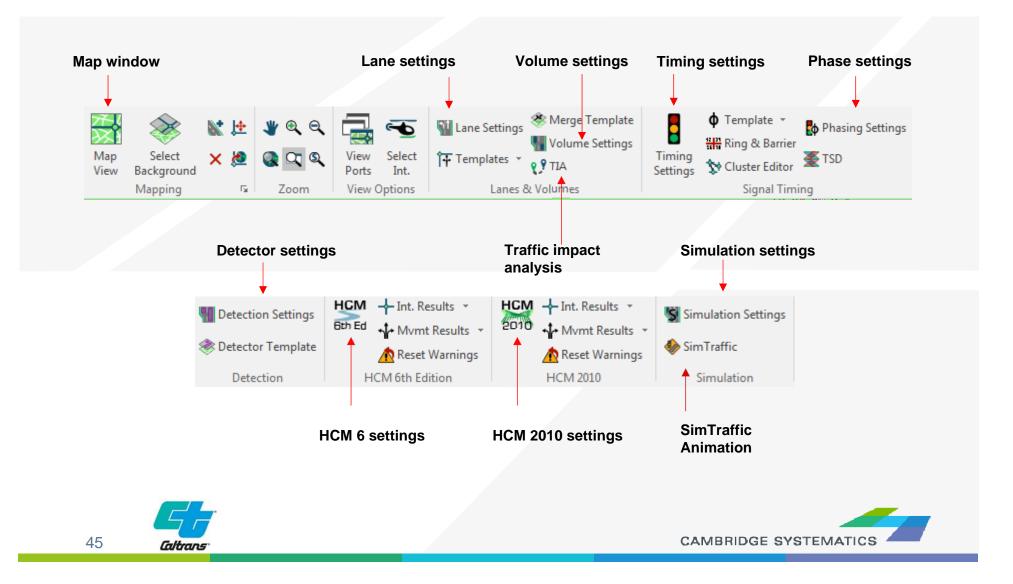

🔍 🔍 🍳

Navigation

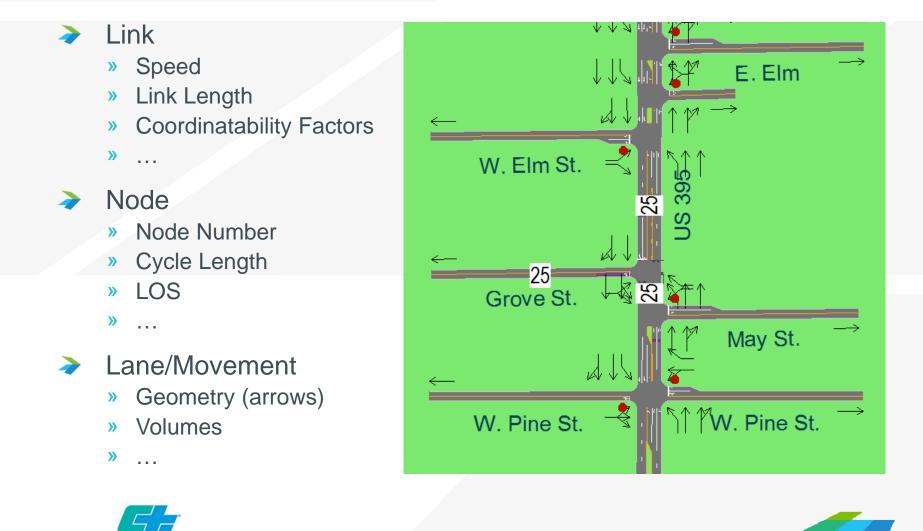
- » Drag Map
- » Zoom In/Out
- » Zoom All
- » Zoom Window
- » Zoom Scale


Editor

- » Add Link
- » Move Node
- » Transform Map


🗶 🎦

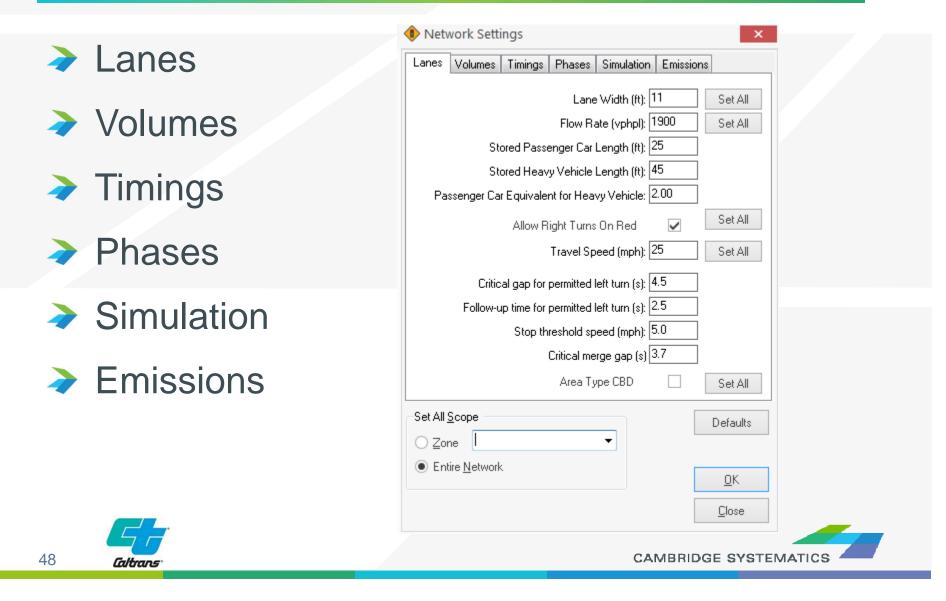
× 🙋



Synchro Operations – Data Entry

Synchro Operations – Display Information

CAMBRIDGE SYSTEMATI


Caltrans

Synchro Operations – Links & Nodes

- Synchro models streets and intersections as links and nodes
- Links
 - » Labeled with 'nearest' direction
 - » Curved Links and Grade Separations allowed
 - Nodes
 - » Signalized: Pretimed or Actuated
 - » Unsignalized: Stop Control
 - » Roundabouts: Limited Analysis
 - » External: Dead Ends
- Create in Map Window

Synchro Operations – Global Network Settings

Synchro Operations – Global Map Settings

Map Settings				×
	Visible	Screen	Printer	Size (ft)
Background Bitmap	>			
Background	\checkmark			
Traveled Way	\checkmark			
Lane Dividers	\checkmark			
Curb Line	>			1.0
Center Line	\checkmark			1.0
Stop <u>B</u> ars	~			3.0
<u>S</u> treet Names	\checkmark			50.0
Node <u>N</u> umbers				50.0
Lane <u>M</u> arkings	\checkmark			
Intersection <u>P</u> aths				
Detectors	>			
Right Tn Islands	>			
Signal Poles	\checkmark			0.5
Signal Heads	>			1.5
Arrow Diagrams				40.0
B : (1) B				
Bing(tm) Zoom		High ▼		
Intersection Radius		40		
Unsignalized Intersec	stion Hadius	30		

Synchro Operations – Lane Settings

- Approach Name
- Lanes and Sharing
- Traffic Volumes
- Link Speed
- Ideal Saturated Flow
- Storage Length
- Storage Lanes
- Right Turn Channelized
- Curb Radius
- Add Lanes
- RTOR
- » Synchro Calculated Values

LANE SETTINGS	EBL	→ EBT	EBR
Lanes and Sharing (#RL)	ሻ	↑	1
Traffic Volume (vph)	60	40	60
Future Volume (vph)	60	40	60
Street Name	Yaney		
Link Distance (ft)	—	517	_
Link Speed (mph)	—	25	—
Set Arterial Name and Speed	-	EB	—
Travel Time (s)	—	14.1	
Ideal Satd. Flow (vphpl)	1900	1900	1900
Lane Width (ft)	11	11	11
Grade (%)	—	0	_
Area Type CBD	—		—
Storage Length (ft)	0	_	25
Storage Lanes (#)	—	_	1
Right Turn Channelized	_	_	None
Curb Radius (ft)	—	—	—
Add Lanes (#)	_	_	_
Lane Utilization Factor	1.00	1.00	1.00
Right Turn Factor	1.000	1.000	0.850
Left Turn Factor (prot)	0.950	1.000	1.000
Saturated Flow Rate (prot)	1540	1621	1378
Left Turn Factor (perm)	0.611	1.000	1.000
Right Ped Bike Factor	1.000	1.000	0.971
Left Ped Factor	0.985	1.000	1.000
Saturated Flow Rate (perm)	975	1621	1337
Right Turn on Red?	—	—	 Image: A set of the /li>
Saturated Flow Rate (RTOR)	0	0	60

Synchro Operations – Volume Settings

- Peak Hour Factor
- Growth Factor
- Heavy Vehicle %
- Bus Blockages (#/hr)
- Adjacent Parking Lane
- Parking Maneuvers
- » Synchro Calculated Values

VOLUME SETTINGS			\mathbf{i}
1 1 01 1 (#D1.)	EBL	EBT	EBR
Lanes and Sharing (#RL)	<u> </u>	T	٦
Traffic Volume (vph)	60	40	60
Development Volume (vph)	0	0	0
Combined Volume (vph)	60	40	60
Future Volume (vph)	60	40	60
Conflicting Peds. (#/hr)	10	—	10
Conflicting Bicycles (#/hr)	—	—	0
Peak Hour Factor	1.00	1.00	1.00
Growth Factor	1.00	1.00	1.00
Adjusted Flow (vph)	60	40	60
Heavy Vehicles (%)	2	2	2
Bus Blockages (#/hr)	0	0	0
Adj. Parking Lane?			
Parking Maneuvers (#/hr)	_	—	—
Traffic from mid-block (%)	_	100	—
Link OD Volumes	—	—	—
Traffic in shared lane (%)	—	_	—
Lane Group Flow (vph)	60	40	60

Synchro Operations – Timing Settings Signalized Intersection Controller

» Pre-timed

- Fixed cycle
- No detector actuations
- » Semi Actuated-Uncoordinated
 - Side street is actuated
 - Cycle length vary therefore uncoordinated
- » Actuated Uncoordinated
 - All phases fully actuated and no recall set
 - Cycle length vary
- » Actuated Coordinated
 - All phases except coordinate phases are fully actuated
 - Cycle length fixed

Synchro Operations – Timing Settings Ring and Barrier Diagram

- » Ring and Barrier Diagram
 - Specifies safe sequencing of phases
 - Ring
 - A sequence of conflicting phase that are not compatible
 - Barrier
 - Permitted/Protected Movements

Synchro Operations – Timing Settings

- Node #
- Control Type
- Cycle Length
- Offset
- Reference to
- Reference Phase

NODE SETTINGS	
Node #	12
ATMS.now Controller ID	0
Import from ATMS.now:	Import
Export to ATMS.now:	Export
Zone:	1
X East (ft):	0
Y North (ft):	2924
Z Elevation (ft):	0
Description	
Control Type	Actd-Coord
Cycle Length (s):	118.0
Lock Timings:	
Optimize Cycle Length:	Optimize
Optimize Splits:	Optimize
Actuated Cycle(s):	118.0
Natural Cycle(s):	60.0
Max v/c Ratio:	0.48
Intersection Delay (s):	13.8
Intersection LOS:	В
ICU:	0.61
ICU LOS:	В
Offset (s):	56.0
Referenced to:	Begin of Yellow
Reference Phase:	2+6 - NBT SBT
Coordination Mode:	Fixed
Master Intersection:	
Yield Point:	Single
Mandatory Stop On Yellow:	

Synchro Operations – Timing Settings

- Turn Type:
 - LT: split, permitted, protected, protected-permitted and custom
 - RT: permitted, protected, overlap,
- Protected/Permitted Phases
- Detector Phases
- Min Initial: Min Green
- Min Split: considers
 - Ped crossing (walk + FDW)
 - Clearance (yellow + all red)
- Total split: total phase time

TIMING SETTINGS	EBL	→ EBT	EBR
Lanes and Sharing (#RL)	ሻ	1	7
Traffic Volume (vph)	60	40	60
Future Volume (vph)	60	40	60
Turn Type	Perm	—	Perm
Protected Phases		4	
Permitted Phases	4		4
Permitted Flashing Yellow	_	_	_
Detector Phases	4	4	None
Switch Phase	0	0	0
Leading Detector (ft)	8	105	20
Trailing Detector (ft)	0	0	0
Minimum Initial (s)	6.0	6.0	6.0
Minimum Split (s)	23.7	23.7	23.7
Total Split (s)	28.0	28.0	28.0
Yellow Time (s)	3.2	3.2	3.2
All-Red Time (s)	0.5	0.5	0.5
Lost Time Adjust (s)	-0.7	-0.7	-0.7
Lagging Phase?	_	—	—
Allow Lead/Lag Optimize?	_		_
Recall Mode	None	None	None
Speed limit (mph)	_	25	_
Actuated Effct, Green (s)	15.2	15.2	13.6
Actuated g/C Ratio	0.13	0.13	0.12
Volume to Capacity Ratio	0.48	0.19	0.29
Control Delay (s)	58.8	45.6	14.2

Synchro Operations – Timing Settings

- » User Inputs (Cont'd)
 - Yellow
 - All-red
 - Lost Time Adjust
 - Lagging Phase: in prot+perm phase
 - Recall Mode: None, Min, Ped and Max
- » Synchro Calculated Values
 - v/c
 - 50th/95th Percentile Queues
 - Queues with 50th/95th percentile traffic volumes

Synchro Operations – Phasing Settings

- Vehicle Extension (Max Gap)
- Min Gap
- Time Before Reduce
- Time to Reduce
- Pedestrian Phase
- Walk Time
- Flash Don't Walk
- Pedestrian Calls
- Dual Entry

1-SBL	₽ 1 2-NBT
4.0	12.0
8.0	19.7
8.0	82.0
3.2	3.2
0.0	0.5
1.0	1.0
3.0	6.1
2.0	2.0
0.0	4.4
0.0	24.6
None	C-Max
_	5.0
_	11.0
_	20
9 mx	78 cd
9 mx	78 cd
9 gp	85 cd
7 gp	89 cd
0 sk	114 cd
	4.0 8.0 3.2 0.0 1.0 3.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

Synchro Operations – Detector Settings

- Number of Detectors
- Leading/Trailing Detectors
 - Distances relative to stop bar
- Detector Type
 - Call, Extend and Call+Extend

DETECTOR SETTINGS	≯	→	\mathbf{i}
DETECTOR SETTINGS	EBL	EBT	EBR
Lanes and Sharing (#RL)	۳	↑	1
Traffic Volume (vph)	60	40	60
Future Volume (vph)	60	40	60
Number of Detectors (#)	1	2	1
Detector Phases	4	4	None
Switch Phase	0	0	0
Leading Detector (ft)	5	105	20
Trailing Detector (ft)	0	0	0
Detector Template	(none)	(none)	(none)
Add/Update Template			
Detector 1 Position (ft)	0	0	0
Detector 1 Size (ft)	5	55	20
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channels			
Detector 1 Extend	0.0	0.0	0.0
Detector 1 Queue	0.0	0.0	0.0
Detector 1 Delay	0.0	0.0	0.0
Detector 2 Position (ft)	_	99	—
Detector 2 Size (ft)	_	6	—
Detector 2 Type	—	CI+Ex	—
Detector 2 Channels	_		_
Detector 2 Extend	_	0.0	—

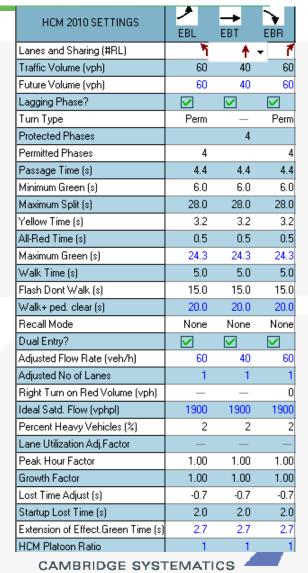
Synchro Operations – Simulation Settings

» SimTraffic

- Microsimulation module of Synchro
- Provides visualization
- Error Checking and Fine Tuning
- » User Inputs
 - Taper Length
 - Lane Alignment
 - Enter Blocked Intersection
 - Link Offset
 - Two-Way Left Turn Lane (TWLTL)
 - Visual only
 - Turning Speed

SIMULATION SETTINGS	EBL	→ EBT	EBR
Lanes and Sharing (#RL)	ሻ	†	1
Traffic Volume (vph)	60	40	60
Future Volume (vph)	60	40	60
Storage Length (ft)	0	—	25
Storage Lanes (#)	_	_	1
Taper Length (ft)	_	—	25
Lane Alignment	Left	Left	Right
Lane Width (ft)	11	11	11
Enter Blocked Intersection	No	No	No
Median Width (ft)	_	11	_
Link Offset (ft)	_	0	_
Crosswalk Width (ft)	_	16	_
TWLTL Median	_		_
Headway Factor	1.19	1.19	1.19
Turning Speed (mph)	15	_	9
Mandatory Distance (ft)		491	_
Positioning Distance (ft)	_	1101	_
Mandatory Distance 2 (ft)		734	_
Positioning Distance 2 (ft)	_	1468	_

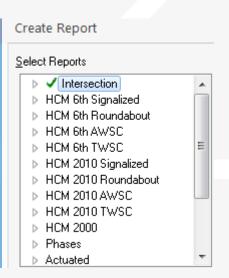
Synchro Operations – HCM 6th Edition Settings


- » Signalized Intersections
 - Auto, Pedestrian, and Bike modes
 - NEMA Phasing adherence
 - Calibration parameters available
 - Coordination effects
 for intersections within 0.60 miles
 - Platoon ratio adjustment available
 - RTOR treated as volume deduction
- » TWSC Intersections
- » AWSC Intersections
- » Roundabouts
 - Follow-up Headway and Critical Headway adjustable

HCM 6th Settings	EBL	→ EBT	EBR
Lanes and Sharing (#RL)	ሻ	†	7
Traffic Volume (vph)	60	40	60
Future Volume (vph)	60	40	60
Tum Type	Perm		Perm
Protected Phases		4	
Permitted Phases	4		4
Lagging Phase?	1	1	V
Opposing right-turn lane influence	Yes		—
+ Signal Timing Details			
Recall Mode	None	None	None
+ Adjusted Flow Rate (veh/h)	60	40	60
Adjusted No of Lanes	1	1	1
Pedestrian volume (p/h)	_	_	10
Bicycle volume (bicycles/h)			0
Right Turn on Red Volume (vph)	_	_	0
+ Ideal Satd. Flow (vphpl)	1900	1900	1900
Work zone on approach?	—		—
Total Approach Width	—	—	—
Lanes open during work zone	_	_	—
HCM Platoon Ratio	1.00	1.00	1.00
HCM Upstream Filtering Factor	1.00	1.00	1.00
Initial Queue (veh)	0	0	0
Include Unsignalized Delay?			—
Unsig. Movement Delay (s/veh)		—	—
Right Turn Channelized	_	_	None
HCM 6th Capacity (veh/h)	165	243	201
HCM Volume/Capacity	0.363	0.165	0.298
HCM Lane Group Delay(s/veh)	53.7	44.8	46.5
HCM Lane Group LOS	D	D	D
HCM Approach Delay (s/veh)	_	48.8	—
HCM Approach LOS	_	D	

Synchro Operations – HCM 2010 Settings

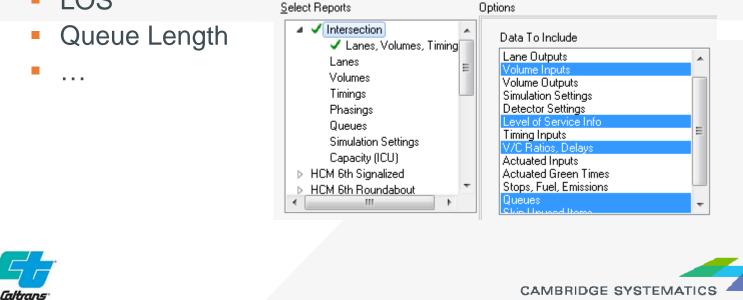
- » Signalized Intersections
 - Auto, Pedestrian, and Bike modes
 - NEMA Phasing adherence
 - Calibration parameters available
 - Coordination effects
 for intersections within 0.60 miles
 - Platoon ratio adjustment available
 - RTOR treated as volume deduction
- » TWSC Intersections
- » AWSC Intersections
- » Roundabouts
 - Follow-up Headway and Critical Headway adjustable



Synchro Operations – Reports

» Methodologies

- Intersection Capacity Utilization (ICU)
 - v/c-based LOS
 - Planning studies
- Highway Capacity Manual (HCM)
 - Delay-based LOS
 - Operations and signal timing design
 - HCM 2010 and HCM 6th Edition method limitations



Synchro Operations – Reports

» Measure of Effectiveness

- Volume-to-Capacity ratio (v/c)
- Delay
 - Control Delay: caused by downstream traffic control device
 - Queue Delay: the effects of queues and blockings
 - Total Delay: Control Delay + Queue Delay
- LOS

	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
	Lane Configurations	7	र्च	1		र्च	1	7	A		7	A1⊅		
	Traffic Volume (vph)	200	100	100	60	60	80	70	500	30	60	900	100	
	Future Volume (vph)	200	100	100	60	60	80	70	500	30	60	900	100	
	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
0	Lane Width	12	12	12	12	12	12	12	12	12	12	12	12	
\sim SVI	Total Lost time (s)	3.0	3.0	3.0		3.0	3.0	2.8	3.0		2.8	3.0		
<u> </u>	Lane Util. Factor	0.95	0.95	1.00		1.00	1.00	1.00	0.95		1.00	0.95		
	Frt	1.00	1.00	0.85		1.00	0.85	1.00	0.99		1.00	0.98		
	Flt Protected	0.95	0.98	1.00		0.98	1.00	0.95	1.00		0.95	1.00		
	Satd. Flow (prot)	1513	1566	1425		1390	1425	1593	2693		1593	2980		
	Flt Permitted	0.95	0.98	1.00		0.98	1.00	0.95	1.00		0.95	1.00		
	Satd. Flow (perm)	1513	1566	1425		1390	1425	1593	2693		1593	2980		
	Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	Adj. Flow (vph)	200	100	100	60	60	80	70	500	30	60	900	100	
	RTOR Reduction (vph)	0	0	84	0	0	69	0	3	0	0	7	0	
	Lane Group Flow (vph)	148	152	16	0	120	11	70	527	0	60	993	0	
	Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	8%	2%	2%	8%	2%	
	Parking (#/hr)					10			20					
	Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA		Prot	NA		
	Protected Phases	4	4		3	3		5	2		1	6		
	Permitted Phases			4			3							
	Actuated Green, G (s)	17.2	17.2	17.2		14.9	14.9	6.8	56.3		7.3	56.8		
	Effective Green, g (s)	17.9	17.9	17.9		15.6	15.6	7.2	57.0		7.7	57.5		
	Actuated g/C Ratio	0.16	0.16	0.16		0.14	0.14	0.07	0.52		0.07	0.52		
	Clearance Time (s)	3.7	3.7	3.7		3.7	3.7	3.2	3.7		3.2	3.7		
	Vehicle Extension (s)	4.0	4.0	4.0		4.0	4.0	3.0	5.0		3.0	5.0		
	Lane Grp Cap (vph)	246	254	231		197	202	104	1395		111	1557		
	v/s Ratio Prot	c0.10	0.10			c0.09		c0.04	0.20		0.04	c0.33		
	v/s Ratio Perm			0.01			0.01							
	v/c Ratio	0.60	0.60	0.07		0.61	0.06	0.67	0.38		0.54	0.64		
	Uniform Delay, d1	42.7	42.7	39.0		44.3	40.8	50.2	15.9		49.4	18.8		
	Progression Factor	1.00	1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00		
	Incremental Delay, d2	4.8	4.4	0.2		6.1	0.2	16.2	0.8		5.3	2.0		
	Delay (s)	47.5	47.1	39.2		50.4	41.0	66.4	16.7		54.8	20.8		
	Level of Service	D	D	D		D	D	E	В		D	С		
	Approach Delay (s)		45.3			46.7			22.5			22.7		
	Approach LOS		D			D			С			С		
	Intersection Summary													
	HCM 2000 Control Delay		28.8 HCM 2000 Level of Service						С					
	HCM 2000 Volume to Cap		0.63											
	Actuated Cycle Length (s)		110.0						11.8					
	Intersection Capacity Utilization			61.2%	IC	ICU Level of Service				В				
64	Analysis Period (min)			20										MATICS
01	c Critical Lane Group													